Abdullahi Maikanti Baru | Materials Science and Engineering | Research Excellence Award

Mr. Abdullahi Maikanti Baru | Materials Science and Engineering | Research Excellence Award

Texas Tech University | United States

Mr. Abdullahi Maikanti Baru is an emerging researcher whose work spans petroleum engineering, civil engineering, and energy systems, with a strong emphasis on sustainable and data-driven infrastructure solutions. His expertise includes multiphase flow in subsurface systems, gas injection processes, hydrogen storage in deep saline aquifers, and structural behavior of engineering materials, complemented by advanced skills in experimental data acquisition and analysis using LiDAR, numerical simulators, and programming tools. He has contributed to peer-reviewed international journal publications and conference proceedings addressing hydrogen energy storage feasibility and structural buckling phenomena, demonstrating interdisciplinary depth and methodological rigor. His research experience involves collaborative projects with faculty and multidisciplinary teams, integrating field measurements, computational modeling, and engineering judgment to address safety, efficiency, and resilience challenges. Through active engagement in professional societies and research leadership roles, his work supports energy transition, infrastructure safety, and informed decision-making, reflecting a growing scholarly profile with meaningful societal and industrial relevance.

Citation Metrics (Cited by)

12

8

4

0

 

Citations
10

h-index
1

i10-index
0

View Google Scholar Profile

Top Publications


An Investigation of Buckling Phenomenon in Steel Elements

– Heriot-Watt University, 2017 · Cited by 9

An Investigation of Buckling Phenomenon in Steel Elements

– 2nd International Earth Science & Global Geology Conference, 2018 · Cited by 1

Haiwei Ji | Functional Materials Science | Research Excellence Award

Dr. Haiwei Ji | Functional Materials Science | Research Excellence Award

Teacher | Nantong University | China

Dr. Haiwei Ji is a tenure-track Professor and Master’s Supervisor specializing in bio-nanofunctional materials, bioelectrochemistry, and advanced nano-sensing technologies for public health and biomedical applications. He earned his Doctorate in Inorganic Chemistry from the Chinese Academy of Sciences and is a recipient of the Jiangsu Shuangchuang Doctor honor for scientific innovation. Dr. Ji has authored 60+ SCI-indexed publications in leading journals such as Advanced Science, Chemical Engineering Journal, Biosensors and Bioelectronics, and Angewandte Chemie, accumulating over 2,000 citations, reflecting strong international impact. His research leadership includes serving as Principal Investigator on National Natural Science Foundation of China projects, particularly in bacterial biofilm diagnosis and precision tumor immunotherapy. Through extensive collaborations with multidisciplinary teams, his work has advanced rapid diagnostics, antimicrobial strategies, and intelligent sensing platforms, contributing meaningfully to public health safety, clinical decision-making, and sustainable biomedical innovation on a global scale.

Citation Metrics (Scopus)

2100

1500

1000

500

0

Citations
2,088

Documents
44

h-index
19


View Scopus Profile

Featured Publications

On-site Detection of OTA and AFB1 Based on Branched Hybridization Chain Reaction Coupled with Lateral Flow Assay
– Talanta, 2025 (7 Citations)
Machine Learning-Engineered Nanozyme System for Synergistic Anti-Tumor Ferroptosis/Apoptosis Therapy
– Small, 2025 (5 Citations)
Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology
– Review Article, 2025 (3 Citations)
Functionalized Antimicrobial Peptides-Based Fluorescent Sensor Array for Multiple Bacteria and Biofilm Identification
– Sensors and Actuators B: Chemical, 2025

Mohamed Ali Elhelaly | Materials Science and Engineering | Excellence in Research Award

Dr. Mohamed Ali Elhelaly | Materials Science and Engineering | Excellence in Research Award

Lecturer | Tabbin Institute For Metallurgical Studies | Egypt

Dr. Mohamed Ali Elhelaly is a senior academic and applied researcher specializing in materials science, corrosion engineering, and metallurgical failure analysis. His expertise spans surface engineering, advanced coatings, heat treatment, welding technology, nanomaterials, and non-destructive testing, with a strong emphasis on industrial reliability and asset integrity. He has authored and co-authored multiple peer-reviewed journal articles and conference papers in high-impact international outlets, addressing corrosion mitigation, high-temperature oxidation, and failure mechanisms in critical engineering components. His research is widely applied through extensive collaboration with petroleum, petrochemical, power generation, and metallurgical industries, where he has contributed to hundreds of technical and root-cause analysis reports. Actively engaged in international standards, peer review, and editorial activities, his work bridges fundamental research and industrial practice, delivering measurable societal impact by enhancing safety, sustainability, and performance of engineering systems in energy and infrastructure sectors

Citation Metrics (Cited by – All)

100

75

50

25

0

Citations
86

h-index
6

i10-index
3


View Scopus Profile
View Google Scholar Profile

Top 5 Featured Publications

Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. | Eskisehir Technical University | Turkey

Assist. Prof. Dr. Seval Kinden is an Assistant Professor of Electrical and Electronics Engineering with recognized expertise in flexible electronics, nanomaterials, wearable sensors, and energy-harvesting systems. She has authored 20+ peer-reviewed journal articles and conference papers, accumulating hundreds of citations, with publications in leading outlets such as IEEE Sensors Journal, Advanced Materials Technologies, and ACS Applied Materials & Interfaces. Her research portfolio includes international and national projects funded by NSF, TÜBİTAK, and industry, alongside a granted patent in graphene-based wearable sensors. Through strong global collaborations and interdisciplinary innovation, her work delivers impactful solutions for healthcare monitoring, smart infrastructure, and sustainable energy technologies, contributing meaningfully to societal and technological advancement.

 

Citation Metrics (Google Scholar)

700

500

300

100

0

Citations 684

h-index 11

i10-index 11


View Google Scholar Profile

Top 5 Featured Publications


Fully conformal square-patch frequency-selective surface toward wearable electromagnetic shielding

– IEEE Antennas and Wireless Propagation Letters, 2017 (72 citations)

Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Dr. Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Postdoctoral Fellow | University of KwaZulu-Natal | South Africa

Dr. Oluwatoyin Joseph Gbadeyan’s research field is anchored in the development of sustainable materials, advanced composites, and innovative manufacturing techniques with applications in mechanical engineering, renewable energy, and the circular economy. His extensive project portfolio includes the design and optimization of bio-composites, bioplastics, and nanomaterials for environmental sustainability and industrial applications. Through his work at leading institutions such as the University of KwaZulu-Natal and Durban University of Technology, he has led groundbreaking projects on hybrid nano-shell plant fiber bio-composites and tribological materials for brake pad applications. His research extends to the valorization of waste materials into high-performance composites, the development of snail shell–derived nanoparticles, and the improvement of additive manufacturing processes to enhance mechanical strength and process efficiency. As a principal investigator and collaborator, he has developed proposals in bioeconomy-focused projects including biofuel, biobricks, and bioplastics, contributing to the advancement of waste-to-energy systems and sustainable product design. His extensive publication record of over thirty peer-reviewed articles, two books, and seventeen book chapters reflects his expertise in nanotechnology, material characterization, and polymer science. Dr. Gbadeyan’s experience spans across academic research, industrial innovation, and technical leadership, where he has successfully guided students and research teams in laboratory experimentation, data analysis, and project execution. His research interests focus on green composite materials, sustainable energy systems, waste valorization, and tribological performance optimization of engineering materials. By integrating materials science with sustainable development principles, he continues to explore innovative approaches that promote eco-friendly manufacturing and circular economy models. His professional activities, including his roles as journal reviewer and committee member for national research funding evaluations, underscore his leadership in advancing the frontiers of sustainable materials research and his dedication to fostering innovation within global engineering communities.

Publications:

Baloyi, R. B., Gbadeyan, O. J., Sithole, B., & Chunilall, V. (2024). Recent advances in recycling technologies for waste textile fabrics: A review. Textile Research Journal, 94(3–4), 508–529.

Khoaele, K. K., Gbadeyan, O. J., Chunilall, V., & Sithole, B. (2023). The devastation of waste plastic on the environment and remediation processes: A critical review. Sustainability, 15(6), 5233.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Awogbemi, O. (2020). Studies on the mechanical and absorption properties of Achatina fulica snail and eggshells reinforced composite materials. Composite Structures, 239, 112043.

Gbadeyan, O. J., Muthivhi, J., Linganiso, L. Z., & Deenadayalu, N. (2024). Decoupling economic growth from carbon emissions: A transition toward low-carbon energy systems—A critical review. Clean Technologies, 6(3), 1076–1113.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Onwubu, S. (2020). Optimization of milling procedures for synthesizing nano‐CaCO₃ from Achatina fulica shell through mechanochemical techniques. Journal of Nanomaterials, 2020(1), 4370172.

S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Dr. S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Professor | SRM Institute of Science and Technology | India

Dr. S. Ilangovan is a distinguished academic and researcher at the SRM Institute of Science and Technology, Ramapuram Campus, Chennai, India, recognized for his significant contributions to engineering and applied sciences. He has authored eight peer-reviewed publications that have collectively garnered 128 citations from 114 documents, reflecting the growing global relevance and academic impact of his work. His research achievements are further evidenced by an h-index of 5, which highlights his consistent scholarly productivity and influence across multiple interdisciplinary domains. Dr. Ilangovan’s research primarily spans the areas of civil and structural engineering, materials science, and sustainable technologies, emphasizing innovative design solutions and environmental resilience. Through collaborations with over 18 co-authors, he has contributed to advancing applied research that bridges theoretical understanding with practical implementation, fostering technological development and knowledge exchange within the academic and industrial sectors. His scholarly endeavors have influenced emerging fields and inspired further studies in engineering design and materials optimization. Beyond publications, Dr. Ilangovan’s work demonstrates a strong societal orientation, focusing on sustainable infrastructure and problem-solving approaches that align with contemporary global development goals. His research contributions, marked by methodological rigor and interdisciplinary perspective, exemplify his commitment to academic excellence, collaborative learning, and the translation of research outcomes into tangible benefits for society. With a steadily growing citation record and recognized expertise, Dr. Ilangovan continues to contribute meaningfully to the scientific community through impactful research, mentorship, and engagement in innovative technological solutions aimed at creating a more sustainable and resilient built environment.

Profile: Scopus | ORCID | Google Scholar
Featured Publications:

Ilangovan, S., Kumaran, S. S., Vasudevan, A., & Naresh, K. (2019). Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Materials Research Express, 6(8), 0850e2. 
(Cited by: 35)

Ilangovan, S., Kumaran, S. S., & Naresh, K. (2020). Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: Experimental, analytical and numerical investigation. Materials Research Express, 7(2), 025007. 
(Cited by: 33)

Keerthi Gowda, B. S., Naresh, K., Ilangovan, S., Sanjay, M. R., & Siengchin, S. (2022). Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites. Journal of Natural Fibers, 19(13), 6074–6088. 
(Cited by: 30)

Ilangovan, S., Kumaran, S. S., Naresh, K., Shankar, K., & Velmurugan, R. (2023). Studies on glass/epoxy and basalt/epoxy thin-walled pressure vessels subjected to internal pressure using ultrasonic ‘C’ scan technique. Thin-Walled Structures, 182, 110160. 
(Cited by: 28)

Subramanian, J., Selvaraj, V. K., Singh, R., Kakur, N., & Whenish, R. (2024). Acoustical properties of a 3D printed honeycomb structure filled with nanofillers: Experimental analysis and optimization for emerging applications. Defence Technology, 35, 248–258.
(Cited by: 14)

Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

Mr. Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

PhD | University of the Balearic Islands | Spain

Mr. Antoni Mir Pons develops research in the field of civil and structural engineering, with a particular focus on the study and application of iron-based shape memory alloys (Fe-SMA) for strengthening existing reinforced concrete structures. His scientific contributions reflect an advanced understanding of materials behavior under semi-cyclic loads and their influence on recovery stresses, which is essential for improving the resilience and sustainability of infrastructures. Currently engaged at the University of the Balearic Islands within the UIB Construct research group, Antoni’s work explores the mechanical performance and practical integration of Fe-SMA as an innovative reinforcement technology. He has presented significant findings at leading international conferences such as the fib PhD Symposium in Civil Engineering and the SMAR Conference in Italy, contributing to global knowledge on structural rehabilitation using smart materials. His previous collaborations with the AMADE group at the University of Girona involved theoretical and experimental studies on reinforced concrete structures strengthened with fiber-reinforced polymer (FRP) laminates, evaluating cracking behavior and proposing refinements to Eurocode and fib Model Code formulations. Antoni’s research also integrates climate resilience aspects, as seen in his participation in projects such as RESTART, focused on mitigating deterioration risks in existing concrete infrastructures under changing environmental conditions. Awarded for his outstanding Master’s Thesis on Fe-SMA reinforcement technology, Antoni continues to bridge experimental engineering with sustainable innovation, contributing to the evolution of active reinforcement systems that reduce environmental impact and extend the lifespan of civil structures. His ongoing doctoral research deepens this line of inquiry, enhancing the understanding of semi-cyclic load effects and establishing a strong foundation for future advancements in structural engineering.

Profile: Scopus
Fearuted Publications:

Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. (2025). Construction and Building Materials.

Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Prof. Dr. Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Research Teacher | Federal Institute of Bahia | Brazil

Prof. Dr. Sandra Cunha Gonçalves has developed a solid academic and scientific career in Civil Engineering, Sustainability, and Environmental Studies, focusing on innovative solutions for the reuse of waste materials in the construction industry. Her research emphasizes solid waste management and the development of eco-friendly materials that incorporate vegetal fibers, modified starch, recycled gypsum, and other industrial by-products to minimize environmental impacts and promote sustainable practices in social housing. Gonçalves has contributed to advancing sustainable construction technologies through the creation of composites and biocomposites with improved physical and mechanical properties, offering alternatives to conventional materials with high energy consumption. Her ongoing projects explore life cycle analysis of materials, the use of green coconut fibers, and polymeric emulsions in gypsum matrices, generating significant results for structural efficiency and environmental performance. Her scientific output includes publications in national and international journals, book chapters, and conference presentations on sustainability, bioconstruction, and waste management. In addition to her research, she promotes extension activities that integrate social technology, environmental education, and vernacular architecture, strengthening the connection between science, culture, and community. At the Federal Institute of Bahia, Gonçalves leads research groups focused on material innovation and environmental education, mentoring new researchers committed to socio-environmental responsibility and construction efficiency. Her professional journey is distinguished by a strong dedication to sustainability, the integration of applied science with technical education, and the continuous pursuit of viable solutions that balance technical performance with the preservation of natural resources.

Profile: ORCID
Featured Publications
Gonçalves, S. C., da Silva Junior, M. F., Souza, M. T., de Amorim Júnior, N. S., & Ribeiro, D. V. (2025). Physicomechanical properties of recycled gypsum composites with polyvinyl acetate emulsion and treated short green coconut fibers. Buildings.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Jialin Liu – Materials Science and Engineering – Best Researcher Award

Jialin Liu - Materials Science and Engineering - Best Researcher Award

Southeast University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

SCOPUS

🎓 SUMMARY

Jialin Liu is a leading researcher in the field of composite materials and structural engineering, with expertise extending from molecular dynamics to macro-scale simulations. A foundation in Naval Architecture and Ocean Engineering laid the groundwork for an impressive academic path that culminated in a Ph.D. from the City University of Hong Kong. The focus of research has consistently bridged theory, experiment, and application, earning recognition across high-impact journals. Through a career deeply rooted in materials science, Liu has demonstrated versatility in tackling real-world engineering challenges with scientifically rigorous solutions, leaving a mark in both academic and applied engineering communities.

🏫 EARLY ACADEMIC PURSUITS

Jialin Liu began academic exploration at the Huazhong University of Science and Technology, earning a B.S. and M.S. in Naval Architecture and Ocean Engineering. Early research included structural mechanics and composite design, highlighting potential for innovation in sandwich structures and Y-shaped core panels. These formative years provided essential hands-on exposure to mechanical testing and material characterization. Driven by curiosity and academic rigor, Liu expanded knowledge through detailed analysis of failure mechanisms and novel fabrication techniques. This period laid the technical and conceptual foundation required for subsequent interdisciplinary research in civil engineering, nanomaterials, and sustainable infrastructure systems.

🏗️ PROFESSIONAL ENDEAVORS IN STRUCTURAL INNOVATION

Following the master's degree, Jialin Liu pursued a Ph.D. at the City University of Hong Kong under the mentorship of Denvid Lau. Research during this period integrated multiscale modeling and experimentation, focusing on cementitious composites and nanomaterial reinforcements. Collaborations with international scholars and contributions to advanced materials journals demonstrate professional dedication. Liu’s engagement in projects involving boron nitride nanosheets, FRP-reinforced concrete, and geopolymer composites reveals a consistent drive to address structural integrity and durability under complex conditions. The academic career continues at Southeast University, where ongoing contributions enrich the Department of Civil and Architectural Engineering with both teaching and research.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

Jialin Liu’s research primarily investigates the mechanical behavior of composite structures under varied loading conditions, integrating nanoscale and macro-scale analysis. Key focus areas include boron nitride nanosheet-reinforced cement, self-healing composites, and FRP materials under thermal and moisture-induced stresses. Liu applies a combination of experimental, theoretical, and computational tools, including molecular dynamics simulations and finite element analysis. Several papers as corresponding author reflect leadership in the field. By innovating in sustainable building materials and developing methods to enhance structural resilience, Liu contributes significantly to material science, structural engineering, and environmental sustainability with high relevance to modern infrastructure challenges.

🏅 ACCOLADES AND RECOGNITION

With over 20 peer-reviewed publications in prestigious journals such as Applied Surface Science, Materials and Design, and Composites Science and Technology, Jialin Liu’s academic excellence has received global recognition. Multiple first-author and corresponding-author papers underscore independent contribution and leadership in scientific discovery. Collaboration with esteemed researchers including Denvid Lau and Jiayi Liu signals recognition from established academic circles. Many studies have been published in Q1 journals, highlighting the impactful and innovative nature of the research. The ability to publish across interdisciplinary domains—from nanotechnology to structural composites—demonstrates a rare versatility that is widely acknowledged within the scientific and engineering communities.

🌍 IMPACT AND INFLUENCE IN ENGINEERING SCIENCE

Jialin Liu’s work holds transformative potential for future construction practices, especially in enhancing material performance under harsh environmental conditions. By combining nanoscale innovations with structural modeling, Liu advances both scientific knowledge and practical solutions for sustainable infrastructure. Research on moisture resistance, high-temperature tolerance, and self-healing materials aligns well with global climate resilience goals. Findings have informed developments in structural health monitoring and retrofitting practices, offering new paths to prolong infrastructure lifespan. Liu’s interdisciplinary contributions influence peers, policy thinkers, and industry professionals aiming to create safer, smarter, and more durable engineering systems that respond to evolving societal needs.

📘 LEGACY AND FUTURE CONTRIBUTIONS

As a scholar whose work bridges civil engineering, nanotechnology, and material science, Jialin Liu is poised to shape future generations of research and innovation. Current studies on intelligent materials, thermal performance, and composite interfaces suggest a forward-looking vision that addresses both engineering efficiency and environmental responsibility. The legacy is not only in publications but in establishing frameworks that others can build upon. Liu is expected to continue exploring interdisciplinary domains, possibly integrating AI-driven structural diagnostics and data-enhanced modeling. With a clear trajectory of impactful research, Liu’s future contributions will likely redefine boundaries in civil materials and sustainable infrastructure design.

PUBLICATION

Title: Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores
Authors: J. Liu, J. Liu, J. Mei, W. Huang
Journal: Composites Science and Technology, 159, 87–102, 2018


Title: A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel
Authors: J. Mei, J. Liu, J. Liu
Journal: Composites Part A: Applied Science and Manufacturing, 102, 28–39, 2017


Title: Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications
Authors: J. Liu, D. Hui, D. Lau
Journal: Nanotechnology Reviews, 11(1), 770–792, 2022


Title: Mechanical response of a novel composite Y-frame core sandwich panel under shear loading
Authors: J. Liu, T. Zhang, W. Jiang, J. Liu
Journal: Composite Structures, 224, 111064, 2019


Title: Bending response and failure mechanism of composite sandwich panel with Y-frame core
Authors: J. Liu, Z. He, J. Liu, W. Huang
Journal: Thin-Walled Structures, 145, 106387, 2019


Title: Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores
Authors: J. Zhou, Y. Wang, J. Liu, J. Liu, J. Mei, W. Huang, Y. Tang
Journal: Composites Part A: Applied Science and Manufacturing, 114, 72–85, 2018