Yiyi Yang | Geotechnical Engineering | Best Scholar Award

Ms. Yiyi Yang | Geotechnical Engineering | Best Scholar Award

Northwestern University | China

Ms. Yiyi Yang is a dedicated researcher in geological engineering with a strong academic foundation and growing expertise in soil mechanics and geotechnical applications. Currently pursuing a master’s degree in Geological Engineering at Northwest University, Xi’an, following a successful completion of a bachelor’s degree in the same field at Xi’an University of Science and Technology, the academic journey reflects both excellence and commitment. Consistently recognized with multiple scholarships and awards, including the First-Class Scholarship at Northwest University, the performance ranking at the top of the class underscores outstanding ability and determination. Research contributions demonstrate an interest in soil-water interactions, particularly in the deformation of compacted loess under wetting and infiltration processes. Work on compaction conditions, microstructural evolution, and hydraulic conductivity showcases both analytical skills and experimental rigor. As part of a collaborative project under the supervision of Ping Li, significant insights were gained into loess behavior, which are highly relevant to civil engineering and geotechnical practices. The publication “From agricultural waste to geotechnical application: Multiscale mechanisms of apple tree biochar for loess reinforcement” in Powder Technology highlights the capacity to connect environmental sustainability with engineering innovation by exploring biochar as a reinforcement material. Beyond academics, contributions as a volunteer and recognition with a two-star volunteer award reflect a well-rounded individual balancing research, academic achievement, and community engagement. Technical skills span experimental methods, data collection, and advanced use of specialized software including AutoCAD, CorelDraw, Origin, and Python, reinforcing readiness for complex research and engineering tasks. Proficiency in English, demonstrated by CET-6, further supports the ability to engage with international research. Altogether, the profile demonstrates exceptional potential for advancing knowledge in geological engineering, particularly in sustainable geotechnical solutions that bridge environmental considerations with practical applications in soil stabilization and infrastructure development.

Profile: Scopus
Featured Publication:

From agricultural waste to geotechnical application: Investigation of apple tree biochar for loess reinforcement. (2025). Powder Technology.

Zhiliang Wang – Geotechnical Engineering – Best Researcher Award

Prof. Zhiliang Wang | Geotechnical Engineering | Best Researcher Award

Professor | Kunming University of Science and Technology | China

Prof. Zhiliang Wang has established a strong research foundation in civil and geotechnical engineering, focusing extensively on tunnel and underground engineering, soil behavior, and numerical simulation methods. His research contributions address safety evaluation of tunnels, mitigation of hazards associated with special soils, and the development of multi-field coupling models for geotechnical applications. By integrating theoretical modeling with experimental studies, Zhiliang Wang has advanced understanding of soil stabilization mechanisms, long-term settlement issues in peat soils, and fracture propagation in rock mass. His works also highlight the application of lattice Boltzmann methods for simulating fluid flow, heat transfer, and seepage in complex soil and rock structures, bridging the gap between computational approaches and practical engineering challenges. Through projects supported by the National Natural Science Foundation of China and industry collaborations, he has contributed innovative solutions for freezing processes in soils, shield tunneling effects, and soil-structure interaction in underground construction. His publications in high-impact journals cover a wide range of topics, from sustainable approaches such as incorporating clay and manufactured sand in soil stabilization to advanced simulations of thermal and hydraulic processes in soils. Zhiliang Wang’s research outcomes not only enhance engineering safety and efficiency but also align with sustainability goals by addressing energy-efficient and environmentally friendly practices in geotechnical engineering. His active involvement in teaching courses like tunnel engineering and numerical simulation further strengthens the link between academic research and practical application, inspiring future professionals in the field. With 366 citations by 339 documents, 65 documents, and an h-index of 11, Zhiliang Wang’s scholarly impact reflects his significant role in shaping modern research and innovations in underground engineering and soil mechanics.

Profile: Scopus
Featured Publications: 
  1. Effect of random microcracks on macroscopic crack propagation in rock. (2024). Cited by 2.

  2. A numerical simulation of high-temperature rock hydraulic fracturing based on coupled thermo-mechanical peridynamics. (2024). Cited by 1.

  3. Study on the seepage and heat transfer effect of rough fractures in hot matrix considering dynamic thermophysical properties of fluid. (2024). Cited by 2.

  4. Numerical simulation of glass panel impact damage based on peridynamics. (2024). Cited by 1.