Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. | Eskisehir Technical University | Turkey

Assist. Prof. Dr. Seval Kinden is an Assistant Professor of Electrical and Electronics Engineering with recognized expertise in flexible electronics, nanomaterials, wearable sensors, and energy-harvesting systems. She has authored 20+ peer-reviewed journal articles and conference papers, accumulating hundreds of citations, with publications in leading outlets such as IEEE Sensors Journal, Advanced Materials Technologies, and ACS Applied Materials & Interfaces. Her research portfolio includes international and national projects funded by NSF, TÜBİTAK, and industry, alongside a granted patent in graphene-based wearable sensors. Through strong global collaborations and interdisciplinary innovation, her work delivers impactful solutions for healthcare monitoring, smart infrastructure, and sustainable energy technologies, contributing meaningfully to societal and technological advancement.

 

Citation Metrics (Google Scholar)

700

500

300

100

0

Citations 684

h-index 11

i10-index 11


View Google Scholar Profile

Top 5 Featured Publications


Fully conformal square-patch frequency-selective surface toward wearable electromagnetic shielding

– IEEE Antennas and Wireless Propagation Letters, 2017 (72 citations)

Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

Mr. Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

PhD | University of the Balearic Islands | Spain

Mr. Antoni Mir Pons develops research in the field of civil and structural engineering, with a particular focus on the study and application of iron-based shape memory alloys (Fe-SMA) for strengthening existing reinforced concrete structures. His scientific contributions reflect an advanced understanding of materials behavior under semi-cyclic loads and their influence on recovery stresses, which is essential for improving the resilience and sustainability of infrastructures. Currently engaged at the University of the Balearic Islands within the UIB Construct research group, Antoni’s work explores the mechanical performance and practical integration of Fe-SMA as an innovative reinforcement technology. He has presented significant findings at leading international conferences such as the fib PhD Symposium in Civil Engineering and the SMAR Conference in Italy, contributing to global knowledge on structural rehabilitation using smart materials. His previous collaborations with the AMADE group at the University of Girona involved theoretical and experimental studies on reinforced concrete structures strengthened with fiber-reinforced polymer (FRP) laminates, evaluating cracking behavior and proposing refinements to Eurocode and fib Model Code formulations. Antoni’s research also integrates climate resilience aspects, as seen in his participation in projects such as RESTART, focused on mitigating deterioration risks in existing concrete infrastructures under changing environmental conditions. Awarded for his outstanding Master’s Thesis on Fe-SMA reinforcement technology, Antoni continues to bridge experimental engineering with sustainable innovation, contributing to the evolution of active reinforcement systems that reduce environmental impact and extend the lifespan of civil structures. His ongoing doctoral research deepens this line of inquiry, enhancing the understanding of semi-cyclic load effects and establishing a strong foundation for future advancements in structural engineering.

Profile: Scopus
Fearuted Publications:

Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. (2025). Construction and Building Materials.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Zoma Fati – Materials Science and Engineering – Best Researcher Award

Zoma Fati - Materials Science and Engineering - Best Researcher Award

Yembila Abdoulaye TOGUYENI University - Burkina Faso

AUTHOR PROFILE

ORCID

RESEARCH BACKGROUND

Zoma Fati has consistently contributed to civil engineering through a multidisciplinary approach combining physics and sustainable material science. His work focuses on local construction techniques and energy-efficient materials, aligning with environmental and thermal regulation goals. At the Université Yembila Abdoulaye TOGUYENI, he has played a leadership role in fostering engineering education and research, especially in material formulation using geo- and bio-sourced components. His efforts have expanded the understanding of thermally adaptive structures like Nubian vaults, emphasizing cost-effectiveness, ecological sustainability, and performance in extreme climates.

INNOVATIVE MATERIAL DEVELOPMENT

Zoma Fati’s research has led to the development of environmentally friendly materials tailored to local contexts. He has proposed scientifically validated criteria for selecting soil suitable for energy-efficient construction. His work also extends into plastic waste-based concrete innovations, targeting civil applications such as roads, sewage systems, and low-cost buildings. These innovations aim to reduce carbon footprints while leveraging abundant local and recycled resources. Though some findings await publication, his progressive direction reflects a commitment to both technical advancement and ecological responsibility, particularly in under-resourced regions.

SCIENTIFIC CONTRIBUTIONS

Zoma Fati has authored 12 journal articles indexed in SCI and Scopus, reflecting the academic rigor and relevance of his contributions. His presence on platforms like ResearchGate, with an h-index of 4, shows active engagement with the scientific community. He holds editorial appointments and regularly participates in peer collaborations, enabling cross-disciplinary knowledge exchange. He has contributed to technical development in Burkina Faso and broader regions by aligning scientific pursuits with local socioeconomic needs, offering practical applications in construction technology and energy conservation strategies.

COLLABORATION AND LEADERSHIP

An influential figure beyond academia, Zoma Fati serves as a board member at ANEREE and holds key roles in organizations such as ABAPEE and SBSIA. These positions enhance his ability to shape policy and professional practices related to energy efficiency and engineering. His leadership at the Université Yembila Abdoulaye TOGUYENI as Dean and previously Assistant Dean exemplifies his administrative capability and strategic vision. Through these roles, he has built frameworks for sustainable research initiatives and fostered interdisciplinary cooperation among scholars, engineers, and policy-makers.

PUBLICATION

Assessment of the embodied energy and carbon footprint of vibration-compacted adobe brick

Authors: Fati Zoma, Noufou Zongo, Etienne Malbila, David Yemboini Kader Toguyeni

Journal: Journal of Building Engineering

Tengyang Zhu – Materials Science and Engineering – Best Researcher Award

Tengyang Zhu - Materials Science and Engineering - Best Researcher Award

Shandong University - China

AUTHOR PROFILE

SCOPUS

ORCID

SUMMARY

TENGYANG ZHU is a dedicated researcher specializing in membrane separation technologies, with extensive expertise spanning gas, liquid, and ion separations. He has authored over 20 peer-reviewed SCI papers in top-tier journals and has taken a leading role in two competitive research projects. With a strong foundation in materials and chemical engineering, he brings innovation to the design and synthesis of high-performance membranes. His research is not only academically impactful but also addresses critical environmental and industrial challenges, particularly in carbon capture and bioethanol purification.

EDUCATION

Dr. Tengyang Zhu obtained his Ph.D. from the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology in 2022. He earned his Master’s degree from Taiyuan University of Technology in Materials Science and Engineering, and his Bachelor’s degree from Liaocheng University. This academic journey solidified his foundation in materials science, enabling him to pursue complex interdisciplinary research in polymer membranes and advanced separation technologies critical to sustainable energy and environmental solutions.

PROFESSIONAL EXPERIENCE

Dr. Zhu has accumulated significant research experience from his graduate studies to postdoctoral work, focusing on advanced membrane separation. He has led and contributed to several national and provincial research projects. Currently, he is actively involved in developing novel polymer membrane materials for carbon capture and selective ion separation. He has also been entrusted with independent project leadership, managing research funding, collaborating across institutions, and mentoring students and junior researchers in the laboratory.

RESEARCH INTEREST

His core research interests lie in membrane-based separation processes, including gas separation, pervaporation, and ion selectivity. He focuses on the development of high-efficiency polymer and composite membranes with tailored structures and functionalities. Dr. Zhu is particularly invested in green and scalable fabrication techniques, the understanding of transport mechanisms, and applications in energy-efficient purification and environmental remediation, such as ethanol dehydration and CO₂ capture.

AWARD AND HONOR

Dr. Zhu has secured prestigious research grants, including the Shandong Postdoctoral Science Foundation and the Natural Science Foundation of Shandong Province. These competitive awards recognize his potential and innovation in membrane research. Additionally, his multiple publications in high-impact journals and the filing of national patents highlight the academic and technological value of his contributions to chemical engineering and material sciences.

RESEARCH SKILL

Dr. Zhu is proficient in synthesizing and characterizing membrane materials using a wide array of techniques including SEM, TEM, and XRD. He demonstrates deep expertise in designing membranes with multifunctional properties and in exploring their separation mechanisms. His skillset covers polymer engineering, nanomaterials integration, and thin-film composite fabrication, positioning him as a capable researcher adept in both theoretical understanding and practical applications of separation technology.

PUBLICATIONS

Title: Coordination-enhanced ionic elastomers: Durable, self-healing, and multimodal sensors for wearable electronics and robotics
Authors: QingMing Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Xu Wang
Journal: Chemical Engineering Journal

Title: High‐Performance and Scalable Organosilicon Membranes for Energy‐Efficient Alcohol Purification
Authors: Tengyang Zhu, Dongchen Shen, Jiayu Dong, Huan Liu, Qing Xia, Song Li, Lu Shao, Yan Wang
Journal: Advanced Functional Materials

Title: Mimosa‐Inspired Body Temperature‐Responsive Shape Memory Polymer Networks: High Energy Densities and Multi‐Recyclability
Authors: Qingming Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Yitan Li, Yongzheng Xing, Xu Wang
Journal: Advanced Science

Title: Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation
Authors: Jing Xiao, Tengyang Zhu, Haiyang Zhang, Wei Xie, Renhao Dong, Yitan Li, Xu Wang
Journal: Angewandte Chemie International Edition

Title: Controllable Hydrogen-bonded Poly(dimethylsiloxane) (PDMS) Membranes for Ultrafast Alcohol Recovery
Authors: Tengyang Zhu, Jiayu Dong, Huan Liu, Yan Wang
Journal: Materials Horizons

Title: TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions
Authors: Qing Xia, Tengyang Zhu, Zhengze Chai, Yan Wang
Journal: Advanced Membranes

CONCLUSION

Tengyang Zhu’s academic rigor, publication record, and leadership in innovative research projects make him a standout contributor in the field of membrane technology. His work bridges fundamental science and industrial application, advancing cleaner energy and environmental sustainability. With his ongoing projects and international publications, he is poised to make long-term contributions to the development of high-performance separation materials and systems.

Ranjit Bariki – Materials Science and Engineering – Best Researcher Award

Ranjit Bariki - Materials Science and Engineering - Best Researcher Award

UAE University - United Arab Emirates

EARLY ACADEMIC PURSUITS

DR. RANJIT BARIKI began his academic journey with a B.Sc. in Chemistry from Utkal University, followed by an M.Sc. and M.Phil. in Inorganic Chemistry at Sambalpur University. Demonstrating an early inclination toward materials science and catalysis, he pursued and completed his Ph.D. at the National Institute of Technology Rourkela in Material Chemistry, under the supervision of Prof. B.G. Mishra. His doctoral research laid a strong foundation in the synthesis and application of porous hybrid materials for sustainable energy and environmental applications.

PROFESSIONAL ENDEAVORS

Dr. Bariki has held several prestigious roles including Postdoctoral Scientist at the American University of Sharjah and UAE University. He also served as a Senior and Junior Research Fellow in India, working extensively on porous hybrid materials. His academic contributions include teaching undergraduate lab courses and guiding master's theses. He has actively participated in scientific editing roles and contributed to knowledge dissemination through freelance editorial work, combining research with communication.

CONTRIBUTIONS AND RESEARCH FOCUS

His research portfolio is richly diverse and centers on the synthesis of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and advanced semiconductor materials. Dr. Bariki has explored applications in ammonia production, photocatalytic hydrogen evolution, biomass conversion, CO₂ reduction, and wastewater treatment. His work often emphasizes cost-effective, sustainable methods for energy and environmental remediation, utilizing complex nanostructures and heterojunction systems for enhanced photocatalytic activity.

ACCOLADES AND RECOGNITION

Dr. Bariki’s scholarly excellence is reflected in numerous accolades, including the Prof. Dayanidhi Patnaik Memorial Award by the Odisha Chemical Society, qualification in national competitive exams like CSIR-NET and GATE, and an IMA scholarship for academic merit. With over 1,100 citations, an h-index of 19, and multiple Q1 journal publications, his work has earned global recognition in photocatalysis and energy conversion.

IMPACT AND INFLUENCE

His scientific contributions have significant implications in addressing climate and energy challenges, especially through innovations in ammonia synthesis, green hydrogen production, and pollutant degradation. With multiple publications in high-impact journals such as Applied Catalysis B, Inorganic Chemistry, and Chemical Engineering Journal, Dr. Bariki has established a strong footprint in both academic and industrial research communities across India and the UAE.

LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bariki envisions pioneering sustainable catalytic technologies that bridge academic innovation with industrial application. He aims to continue expanding his work on renewable energy solutions and photocatalysis, fostering collaborations globally. His legacy is being built upon novel catalyst architectures and a dedication to mentoring future chemists and engineers in clean energy technologies.

PUBLICATION EXCELLENCE

With over 25 high-impact publications, Dr. Bariki has significantly enriched literature on multifunctional photocatalysts and green chemistry. His papers reflect a sophisticated understanding of charge migration mechanisms, material heterojunctions, and environmental decontamination strategies. His authorship often leads key projects, as seen in his corresponding author roles, emphasizing leadership in research dissemination.

NOTABLE PUBLICATION

Title: Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution
Authors: R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra
Journal: Applied Catalysis B: Environmental 270, 118882 (2020)

Title: Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer
Authors: D. Majhi, A.K. Mishra, K. Das, R. Bariki, B.G. Mishra
Journal: Chemical Engineering Journal 413, 127506 (2021)

Title: Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and
Authors: K. Das, R. Bariki, D. Majhi, A. Mishra, K.K. Das, R. Dhiman, B.G. Mishra
Journal: Applied Catalysis B: Environmental 303, 120902 (2022)

Title: A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ZnIn₂S₄ ternary photocatalyst: A novel dual Z-scheme system with enhanced
Authors: D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, et al.
Journal: Journal of Materials Chemistry A 8(41), 21729–21743 (2020)

Title: In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme engineering for photocatalytic renewable H₂ production
Authors: R. Bariki, S.K. Pradhan, S. Panda, S.K. Nayak, D. Majhi, K. Das, B.G. Mishra
Journal: Separation and Purification Technology 314, 123558 (2023)