Oluwaseun Victoria Fatoye | Sustainable Development | Women Researcher Award

Ms. Oluwaseun Victoria Fatoye | Sustainable Development | Women Researcher Award

Lecturer 2 | Anchor University Lagos | Nigeria

Ms. Oluwaseun Victoria Fatoye demonstrates strong and steadily expanding research capabilities, reflected in her 26 citations and h-index of 3, supported by a solid record of multidisciplinary publications in hydro-geophysics, groundwater studies, atmospheric sciences, and ionospheric responses to meteorological disturbances. Her strengths include consistent research productivity across reputable journals, active collaboration with diverse research groups, and practical expertise gained through roles such as Lecturer II at Anchor University and Research Intern at the South African National Space Agency, where she handled meteorological and VLF space data analysis and delivered periodic research reports, showcasing her analytical rigor and scientific communication skills. She has contributed significantly to groundwater evaluation, geophysical survey interpretation, climate-related ionospheric studies, and environmental monitoring, displaying versatility and commitment to socially relevant scientific problems. Her participation in international conferences, funded research programs like the SCOSTEP Visiting Scholar Award, and involvement in interdisciplinary workshops further highlight her dedication to continuous growth and global scientific engagement. Areas for improvement include increasing publication frequency in high-impact international journals to enhance global visibility, expanding first-author contributions, and deepening specialization in emerging topics such as satellite-based geophysical modelling or advanced atmospheric-ionospheric coupling mechanisms. Strengthening grant-writing capacity and growing international collaborations could further accelerate her research impact. Looking ahead, Oluwaseun Victoria Fatoye shows strong potential to become a leading researcher in environmental geophysics and space-weather science, with opportunities to advance innovative methodologies for groundwater resource management, ionospheric disturbance forecasting, and climate-related hazard mitigation. Her multidisciplinary foundation, field experience, and growing international exposure position her to make meaningful scientific contributions, mentor future scholars, and shape research directions in hydro-geophysics, geoscience applications, and atmospheric-space interactions over the coming years.

Profile: Google Scholar
Publications

Nwankwo, V. U. J., Denig, W., Chakrabarti, S. K., Ogunmodimu, O., Ajakaiye, M. P., … (2022). Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region. Annales Geophysicae, 40(4), 433–461. https://doi.org/10.5194/angeo-40-433-2022

Ibiwoye, J. O., Fatoye, O. V., Ayeni, J. K., Olasehinde, D. A., Ibrahim, T. A., … (2024). Evaluation of groundwater potential and aquifer protective capacity using Dar-Zarrouk parameters: A case study of Kwara State Polytechnic, Kwara State, Nigeria. Anchor University Journal of Science and Technology, 5(1), 107–123.

Olawuyi, A. K., Fatoye, O. V., Adeyanju, M. A., Oyanameh, O. E., & Arowosafe, K. O. (2022). Fracture delineation and characterization for groundwater study using azimuthal resistivity survey: Case study of part of University of Ilorin, Southwestern Nigeria. Nigerian Journal of Scientific Research, 21(2), 436–445.

Arowosafe, K. O., Bamgboye, A. I., Adesanya, A. A., Odugbose, B. D., Olannye, U. D., … (2022). Biofuel production from locally sourced roselle (Hibiscus sabdariffa L.) seed oil using transesterification process. Nigerian Journal of Technology, 41(1), 191–196. https://doi.org/10.4314/njt.v41i1.21

Adebayo, S. A., Olasehinde, P. I., Obasaju, D. O., Fatoye, O. V., & Alejolowo, E. A. (2021). Investigation of structurally controlled mineralisation in Bode-Saadu axis, southwestern Nigeria: A case study using magnetic data. Arabian Journal of Geosciences, 14(13), 1243. https://doi.org/10.1007/s12517-021-07146-3

Ghizlane Moutaoukil | Sustainable construction materials | Eco-friendly Construction Practices Award

Dr. Ghizlane Moutaoukil | Sustainable construction materials | Eco-friendly Construction Practices Award

Postdoctoral researcher | Centro de Física de Materiales (CFM) | Spain

Dr. Ghizlane Moutaoukil is a distinguished researcher in materials chemistry and environmental science, specializing in the synthesis, characterization, and thermomechanical evaluation of sustainable construction materials. With a PhD jointly earned from Mohammed V University in Rabat and the Institute of Materials Science of Madrid, the research focuses on the development of dense and porous geopolymers derived from industrial waste. Extensive investigations cover the optimization of mechanical and microstructural properties of fly ash-based geopolymers, thermomechanical behavior, foaming processes, and the integration of radiative cooling functions in cementitious composites. As a postdoctoral researcher at the Centro de Fisica de Materiales (CSIC/UPV-EHU), Moutaoukil continues advancing sustainable materials for environmental and energy applications. The impressive publication record in journals such as Materials Letters, Advanced Science, and Construction and Building Materials reflects deep expertise in MAS NMR, FTIR, XRD, and Raman spectroscopy. Patents and collaborative works, notably the “Modern Roman-Inspired Concrete with Daytime Radiative Cooling Capacity,” demonstrate innovative thinking bridging chemistry and civil engineering. Research also includes the mechanosynthesis of phosphate mine waste-based geopolymers and geochemical applications for pollution control. Proficiency in Arabic, French, English, and Spanish strengthens global collaboration capacity. Technical mastery extends to process engineering, corrosion studies, and rheological analysis, with strong computational and statistical design skills. Active participation in international conferences from Morocco to Spain and Turkey underscores commitment to interdisciplinary scientific exchange. Ghizlane Moutaoukil’s contributions—166 citations, 12 publications, and an h-index of 6—reflect consistent research excellence and growing global recognition, making Ghizlane Moutaoukil a promising leader in sustainable materials and environmental innovation.

Profile: Scopus | ORCID
Featured Publications:

Ghizlane Moutaoukil, Isabel Sobrados, & Jorge S. Dolado. (2025, October). Development of phosphate mine waste-based geopolymer by mechanosynthesis. Construction and Building Materials, 143573.

Jorge S. Dolado, Guido Goracci, Ghizlane Moutaoukil, Ridwan O. Agbaoye, Miguel Beruete, Alicia E. Torres‐García, Laura Carlosena, Achutha Prabhu, Jose A. Ibáñez, Nick Adams, et al. (2025, September 12). A modern Roman-inspired concrete with daytime radiative cooling capacity. Advanced Science.

Ghizlane Moutaoukil, Isabel Sobrados, H. Süleyman Gökçe, & Saliha Alehyen. (2025, June). Effect of thermal treatment, foaming and stabilizing agents on the synthesis of fly ash-based geopolymer foams using Raman spectroscopy and 29Si and 27Al MAS NMR. Sustainable Chemistry for the Environment, 100257.

Ghizlane Moutaoukil, Isabel Sobrados, Saliha Alehyen, & M’hamed Taibi. (2024, May 16). Monitoring the geopolymerization reaction of geopolymer foams using 29Si and 27Al MAS NMR. Minerals, 14(5), 516.

Ghizlane Moutaoukil, Isabel Sobrados, Saliha Alehyen, & M’hamed Taibi. (2024, March). Understanding the thermomechanical behavior of geopolymer foams: Influence of rate and type of foaming agent and stabilizer. Chemical Data Collections, 101111.

Ghizlane Moutaoukil, Saliha Alehyen, Isabel Sobrados, & Amine El Mahdi Safhi. (2023, June). Effects of elevated temperature and activation solution content on microstructural and mechanical properties of fly ash-based geopolymer. KSCE Journal of Civil Engineering.

Muhammad Usama Haroon – Sustainability – Eco-friendly Construction Practices Award

Muhammad Usama Haroon - Sustainability - Eco-friendly Construction Practices Award

Middle East Technical University Northern Cyprus Campus - Pakistan

AUTHOR PROFILE

SCOPUS

🌱 SUMMARY

Muhammad Usama Haroon is a dedicated researcher in the field of environmental and sustainable engineering, currently pursuing his Master of Science in Sustainable Environment and Energy Systems at Middle East Technical University, Turkey. His academic background in chemical engineering and sustainability research highlights a commitment to addressing environmental challenges through innovation. His thesis explores the eco-friendly stabilization of soft clays using treated sewage sludge as a sustainable alternative to cement—an approach aimed at reducing environmental impact while enhancing construction materials. With a CGPA of 3.86/4.00, he has demonstrated academic excellence and a passion for impactful research. Usama’s work spans areas such as cementitious materials, solid waste reuse, durability assessments, and microstructural characterization. His publications and scholarly activities underscore a keen ability to bridge theory with practical environmental solutions. This summary reflects Usama’s journey as a young, promising researcher focused on blending sustainable development goals with scientific rigor.

📘 EARLY ACADEMIC PURSUITS

Usama began his academic journey at the University of Engineering and Technology (UET) in Lahore, Pakistan, where he earned a Bachelor of Science in Chemical Engineering with a strong academic performance. During his undergraduate years, he laid the foundation for his interdisciplinary research interests in materials science, sustainability, and environmental engineering. His exposure to chemical processes, thermodynamics, and environmental control systems equipped him with essential skills for tackling sustainability challenges. This foundational phase also ignited his curiosity about the reuse of industrial and municipal waste materials—eventually leading to his specialization in sustainable construction and environmental systems. Even at this early stage, Usama showed interest in improving environmental practices in real-world contexts, as evidenced by his later internships and review papers focused on water reuse and waste management. These academic beginnings highlight his progressive mindset and the formative experiences that propelled him toward a research-focused career in environmental sustainability.

👨‍🏫 PROFESSIONAL ENDEAVORS

Professionally, Usama has excelled in both academic and educational roles, blending teaching with research. Currently a graduate teaching assistant at Middle East Technical University, he actively contributes to the Chemistry Department, facilitating lab work and tutoring in courses such as General Chemistry and Physical Chemistry. His prior teaching roles at The City School DHA Campus and Allied School as a chemistry and mathematics instructor and academic coordinator demonstrate strong pedagogical commitment. He designed lesson plans, led lab sessions, coordinated assessments, and guided students, showcasing leadership and communication skills vital to any academic career. These diverse teaching experiences, spanning from school to university level, not only reflect his versatility but also reinforce his dedication to spreading scientific knowledge. Moreover, his professional internship at FrieslandCampina Engro Pakistan Limited allowed him to work hands-on in optimizing water resource strategies, further solidifying his expertise in industrial sustainability practices. His career path exemplifies a balanced approach to education, research, and real-world application.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Usama’s core research contributions center on environmental engineering, sustainable construction materials, and climate action. His most impactful work includes the development of eco-friendly stabilization techniques for soft clays using treated sewage sludge—a sustainable alternative to cement. By reducing reliance on cement, this work not only curbs CO₂ emissions but also promotes beneficial reuse of municipal waste. His contributions also extend to indoor air quality and occupant thermal comfort in hot and humid climates, particularly in urban regions of Pakistan. Usama has published research in notable journals such as Sustainability, with topics spanning from solid waste reuse to microstructural analysis of treated clay composites. His interdisciplinary expertise covers cementitious materials, durability testing, and environmental data analysis. The integration of microscopy, chemical analysis, and statistical tools in his research showcases a robust, data-driven approach. Usama’s work directly supports the UN Sustainable Development Goals, particularly in climate action, clean water access, and sustainable industrial practices.

🏅 ACCOLADES AND RECOGNITION

Usama’s academic journey has been distinguished by recognition at both national and international levels. He was awarded a full scholarship for his master's program at Middle East Technical University in recognition of his academic excellence and potential. Additionally, he earned a certificate of merit for presenting his research paper on sustainable water utilization and wastewater reuse in Pakistan’s dairy industry at the prestigious NISE Conference in Kyrenia, Cyprus. These honors affirm the scholarly quality and societal relevance of his research. His ability to present, publish, and apply complex environmental data in a meaningful way reflects a high level of intellectual maturity and innovation. Furthermore, his role as a teaching assistant comes with merit-based responsibilities, further validating his standing in the academic community. These accolades serve not only as personal achievements but as validation of his contributions to sustainability, environmental engineering, and academic leadership.

🌍 IMPACT AND INFLUENCE

Usama’s work holds significant promise in transforming how societies approach construction, waste management, and environmental planning. His exploration of sewage sludge as a substitute for cement introduces a sustainable and scalable solution to two major issues: cement overuse and sludge disposal. This innovation, if adopted widely, could significantly lower greenhouse gas emissions from the construction industry. Furthermore, his research on climate change in Pakistan and his review of industrial water reuse provide vital policy insights aligned with the 2030 Agenda for Sustainable Development. As a multidisciplinary thinker, Usama bridges engineering, environmental science, and policy-making—offering holistic solutions to global challenges. His influence is growing within academic and applied research circles, particularly across Turkey and Pakistan. By focusing on developing-country contexts, Usama brings attention to localized sustainability needs and promotes equitable scientific progress. His impact goes beyond publications—it lies in his ability to generate actionable knowledge for environmental resilience and sustainability.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Usama aims to deepen his research in eco-friendly construction materials, particularly through advanced waste valorization techniques and circular economy frameworks. His vision includes contributing to low-carbon technologies, improving soil stabilization practices, and shaping environmental policy through scientific evidence. Usama’s legacy will likely be one of interdisciplinary innovation, especially in regions vulnerable to climate stress. He is poised to lead collaborative projects that merge academia with industry, and to mentor future sustainability scholars. His ability to communicate scientific findings in accessible ways makes him a potential advocate for sustainable practices at both grassroots and institutional levels. As global challenges intensify, Usama’s research offers scalable, eco-conscious solutions that could inform not only engineering practice but also sustainability education and policy frameworks. With a solid foundation in teaching, research, and applied science, his future contributions will undoubtedly leave a lasting mark on environmental science and sustainable development worldwide.

PUBLICATION

 

  • Title: Sustainable strength enhancement of cement-clay composites through partial replacement with sewage sludge and sewage sludge ash

  • Authors: [Not specified in the input]

  • Journal: Construction and Building Materials

Daniel Goulart | Sustainable Development | Best Researcher Award

Daniel Goulart | Sustainable Development | FGV EAESP

EARLY ACADEMIC PURSUITS:

Daniel Goulart's academic journey began with early pursuits at FGV EAESP, signaling the commencement of his scholarly endeavors. Details about his initial academic pursuits, including educational milestones, areas of interest, and any notable achievements during this foundational period, are essential for understanding his intellectual trajectory.

PROFESSIONAL ENDEAVORS:

Transitioning from academia to the professional sphere, Goulart's career unfolded with various professional endeavors. Specifics about his roles, projects, and collaborations during this phase, particularly those aligned with his academic background, provide insights into the practical application of his knowledge and skills.

CONTRIBUTIONS AND RESEARCH FOCUS:

Goulart's contributions and research focus form a crucial aspect of his academic and professional identity. Whether through publications, engagement in research projects, or advancements within a specific field, delineating the thematic concentration of his contributions offers a comprehensive understanding of his academic impact.

NOTABLE PUBLICATION

The predictors driving farmers’ decision on drying and storage technology adoption

Viabilizando a estratégia de crédito mercantil no agronegócio.

Gestão de custos e formação de preços no setor de commodities.

Soluções para os gargalos da agricultura.

ORCID

IMPACT AND INFLUENCE:

Assessing Goulart's impact and influence involves recognizing the broader effects of his work. This encompasses positive outcomes in academia, acknowledgment within his professional network, and any influence he may have had on students, colleagues, or the academic community at large.

ACADEMIC CITATIONS:

An indicator of Goulart's academic influence lies in the number of citations his work has garnered. High citation metrics would signify that his research has made a noteworthy contribution to the academic discourse, with fellow researchers and scholars referencing his work in their own studies.

LEGACY:

Daniel Goulart's legacy is shaped by the enduring impact he leaves at FGV EAESP. This could include contributions to the academic environment, mentorship of students, and the cultivation of a positive and collaborative culture within his academic sphere.

FUTURE CONTRIBUTIONS:

Looking ahead, Goulart's future contributions may involve continued advancements in his academic and professional pursuits. This could encompass further research, participation in impactful projects, mentorship of emerging scholars, and potentially taking on leadership roles that contribute to the growth and development of FGV EAESP.