Ayse Pekrioglu Balkıs | Sustainable Development | Best Researcher Award

Assoc. Prof. Dr. Ayse Pekrioglu Balkıs | Sustainable Development | Best Researcher Award

Assoc. Prof. Dr.-head of civil engineering department | Cyprus International University | Cyprus

Assoc. Prof. Dr. Ayse Pekrioglu Balkıs has established a strong academic and research profile in civil engineering with a focus on sustainable construction materials, geotechnical engineering, and structural performance enhancement. Her scholarly work demonstrates expertise in soil stabilization, utilization of waste materials, and development of innovative composites for environmentally responsible construction practices. She has extensively investigated the use of marble dust, fly ash, polymer fibers, polypropylene, shredded plastics, biochar, sewage sludge ash, and biopolymers to enhance the mechanical and durability properties of concrete, mortar, and earthen materials, thereby contributing to both sustainability and cost-effectiveness in construction. Through her numerous international journal publications and conference presentations, Balkıs has provided valuable insights into improving soil strength, flexural performance of reinforced concrete beams, and the behavior of earthen structures under various environmental and mechanical conditions. Her research also extends to advanced techniques such as the application of multi-walled carbon nanotubes for soil improvement and alkali activation of clays for sustainable earthen brick production. She has supervised several master’s and doctoral theses on diverse topics including stabilization of expansive soils, use of recycled aggregates, performance of mortars with waste materials, and sustainable alternatives to Portland cement, fostering innovation among emerging researchers. In addition to her research contributions, Balkıs has held significant academic leadership roles, including serving as Head of the Civil Engineering Department at Cyprus International University, and has been actively engaged in organizing and reviewing for international conferences and journals. Her involvement in professional committees and symposium leadership highlights her commitment to advancing the field and mentoring the next generation of engineers. With a consistent focus on bridging environmental sustainability and structural performance, Balkıs continues to influence research directions in civil engineering. This impactful body of work demonstrates significant scholarly contributions and practical applications in the built environment. Ayşe Pekrioğlu Balkıs has 324 Citations, 25 Documents, and a 10 h-index.

Profile: Scopus | Google Scholar
Featured Publications:
  • Bicer, K., Yalciner, H., Balkıs, A. P., & Kumbasaroglu, A. (2018). Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers. Construction and Building Materials, 185, 574–588.
  • Balkis, A. P. (2017). The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen. Construction and Building Materials, 134, 556–562.
  • Yalciner, K. B. H., Kumbasaroglu, A., El-Sayed, A. K., & Pekrioglu Balkıs, A. (2020). Flexural strength of corroded reinforced concrete beams. Structural Journal, 117(1), 29–41.
  • Doven, A. G., & Pekrioglu, A. (2005). Material properties of high volume fly ash cement paste structural fill. Journal of Materials in Civil Engineering, 17(6), 686–693.
  • Ilman, B., & Balkis, A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties. Journal of Building Engineering, 76, 107220.

Zou Jianwei – Climate Change Mitigation and Adaptation – Best Researcher Award

Zou Jianwei - Climate Change Mitigation and Adaptation - Best Researcher Award

guangxi university - China

AUTHOR PROFILE

ORCID

SUMMARY

Zou Jianwei is a dedicated researcher in the field of Animal Genetics, Breeding, and Reproduction, currently pursuing a Ph.D. at Guangxi University. The focus lies in exploring how environmental stressors, particularly heat stress, influence reproductive health in livestock. Through methodical experimentation and data-driven insights, the research contributes significantly to animal science, with implications for both academic progress and agricultural resilience. Academic activities are marked by diligence in project execution, data analysis, and scholarly writing. The journey is defined by innovation, precision, and a commitment to enhancing livestock productivity through science. This profile reflects academic rigor and meaningful contribution to sustainable livestock systems.

EARLY ACADEMIC PURSUITS

Academic foundations were laid at Guangxi University, where deep interest in animal science evolved into a focused pursuit of advanced research. The academic pathway reflects an early passion for biological systems, agricultural sustainability, and genetic mechanisms. Rigorous training in animal physiology and biotechnology provided essential skills for complex research. Enrollment in a doctoral program enabled deeper exploration of livestock reproduction under climatic challenges. Early learning experiences involved mastering laboratory techniques, understanding genetic pathways, and engaging with literature that bridges fundamental biology and applied science. These formative years created the groundwork for a promising research career that addresses real-world agricultural issues.

PROFESSIONAL ENDEAVORS

Current doctoral research at Guangxi University represents a significant phase in professional development. A key project investigates how heat stress affects ovarian function and circRNA expression in Hu sheep. This endeavor required designing and executing controlled animal studies, collecting and analyzing physiological data, and conducting advanced molecular biology experiments. Professional involvement spans experimental modeling, histological evaluation, sequencing, and collaborative manuscript writing. These responsibilities showcase strong technical acumen and organizational skills. Through this project, valuable contributions have been made toward understanding stress-induced fertility disruptions in livestock. The research has real-world relevance, addressing issues of food security and livestock management under changing climates.

CONTRIBUTIONS AND RESEARCH FOCUS

Primary research centers on understanding the molecular mechanisms behind heat stress-induced reproductive dysfunction in Hu sheep. Focused investigations target antioxidant systems, follicular development, cell apoptosis, and regulatory roles of circular RNAs (circRNAs). This integrative approach offers novel insights into how environmental stress alters gene expression and cellular health in reproductive tissues. The design of heat stress models and in-depth analysis of circRNA profiles contribute to emerging genomic knowledge. These contributions strengthen the field of animal biotechnology by providing data that can inform breeding strategies and improve resilience. Research enhances scientific understanding and supports genetic improvement for climate-adapted livestock.

ACCOLADES AND RECOGNITION

Scientific achievements include co-authoring a high-impact publication in the peer-reviewed journal Animals, highlighting original findings on heat stress and circRNA expression in Hu sheep. This paper, recognized for its methodological rigor and relevance, contributes to the international discourse on livestock adaptation. Involvement in this research has been acknowledged by academic mentors and peers alike, reflecting high standards of experimental and analytical competence. The project’s success and publication underscore a growing reputation in the field of animal science. The academic journey is marked by early success, promising further recognition through continued dedication to innovation and scholarly excellence in reproductive genetics.

IMPACT AND INFLUENCE

Research has significant implications for livestock production systems facing environmental stress, particularly in subtropical regions like Guangxi. By revealing the biological impact of heat stress on sheep reproduction, the work contributes to global efforts in sustainable agriculture and animal welfare. Findings may guide breeding programs aiming to develop thermotolerant livestock, improving productivity and resilience. Through academic dissemination and collaboration, the research extends beyond the laboratory, offering practical solutions to climate-related challenges in animal husbandry. This growing influence is rooted in scientific depth, societal relevance, and a vision for integrating molecular biology with applied agricultural needs in real-world settings.

LEGACY AND FUTURE CONTRIBUTIONS

Future ambitions include expanding research on reproductive genetics, epigenetics, and environmental adaptation in livestock. By integrating omics technologies with applied breeding, the goal is to develop practical tools for improving fertility and stress tolerance. Planned contributions aim to influence policy, guide breeding programs, and inspire interdisciplinary collaboration. The legacy envisioned is one of translational research—where molecular insights drive agricultural innovation. Further studies will likely explore broader species contexts, delve into RNA regulatory networks, and engage with global agricultural communities. With a strong foundation and forward-looking vision, this research journey is poised to make lasting contributions to animal science.

NOTABLE PUBLICATIONS

Title: Effect of heat stress on growth performance, carcase characteristics, meat quality and rumen-muscle axis of Hu sheep
Authors: Sanbao Zhang, Yu Zhang, Yirong Wei, Jianwei Zou, Bao Yang, Qian Wang, Jun Lu, Junzhi Lu, Zihua Zheng, Yanna Huang, et al.
Journal: Italian Journal of Animal Science (Published: 2024-12-31)


Title: Transcriptome-Wide Study Revealed That N6-Methyladenosine Participates in Regulation Meat Production in Goats
Authors: Juhong Zou, Yujian Shen, Jianwei Zou, Jingsu Yu, Yuhang Jiang, Yanna Huang, Qinyang Jiang
Journal: Foods (Published: 2023-03-09)