Shaokai Wang | Geotechnical Engineering | Research Excellence Award

Dr. Shaokai Wang | Geotechnical Engineering | Research Excellence Award

Lecturer | North China University of Water Resources and Electric Power | China

Dr. Shaokai Wang is a Lecturer at North China University of Water Resources and Electric Power, holding a Ph.D. in Geological Engineering with over five years of experience in teaching and research. His expertise lies in geological and geotechnical engineering, with a strong focus on geological hazard mitigation, loess-related geohazards, and landslide monitoring and early warning systems. He has led and contributed to nationally funded projects supported by the National Natural Science Foundation of China, including research on catastrophic loess discontinuities and innovative biopolymer-based soil improvement technologies. Dr. Wang has published peer-reviewed articles in high-impact international journals such as Engineering Geology and Journal of Asian Earth Sciences, accumulating citations that reflect the relevance of his work. His research integrates field investigations, numerical simulations, and risk modeling to support disaster prevention, sustainable land-use planning, and resilient infrastructure development, contributing meaningfully to societal safety in hazard-prone regions.

Citation Metrics (Scopus)

500

400

300

200

100

0

Citations
461

Documents
8

h-index
7


View Scopus Profile

Top Publications

Static liquefaction capacity of saturated undisturbed loess in South Jingyang platform

Water (Switzerland), 2020 · Open Access

Mukhtiar Ali Soomro | Soil-structure interaction | Excellence in Research Award

Prof. Dr. Mukhtiar Ali Soomro | Soil-structure interaction | Excellence in Research Award

Professor | China University of Mining and Technology | China

Prof. Dr. Mukhtiar Ali Soomro is a geotechnical engineering researcher with a strong publication record in soil–structure interaction, tunnelling, piled foundations, deep excavations, and ground deformation analysis. His research integrates advanced numerical modelling, centrifuge testing, and analytical approaches to investigate the response of piles, piled rafts, embankments, and masonry structures under complex loading and excavation conditions. He has published extensively in high-impact international journals such as Tunnelling and Underground Space Technology, Computers and Geotechnics, Canadian Geotechnical Journal, and Geomechanics and Engineering. His work contributes significantly to safer and more sustainable underground and foundation engineering practices.

Citation Metrics (Scopus)

1000

750

500

250

0

Citations 931

Documents 44

h-index
16

View Scopus Profile View ORCID Profile View Google Scholar Profile .

Featured Publications


Three-Dimensional Centrifuge Modelling of Pile Group Responses to Side-by-Side Twin Tunnelling


– Tunnelling and Underground Space Technology, 2014 (Citations: 104)

Load Transfer Mechanism in Pile Group Due to Single Tunnel Advancement in Stiff Clay


– Tunnelling and Underground Space Technology, 2015 (Citations: 97)

IoT-Based Smart Garbage Monitoring & Collection System Using WeMos and Ultrasonic Sensors


– International Conference on Computing, Mathematics and Engineering, 2019 (Citations: 94)

Fuat Aras | Structural Engineering | Research Excellence in Civil and Environmental Engineering Award

Prof. Fuat Aras | Structural Engineering | Research Excellence in Civil and Environmental Engineering Award

Istanbul Medeniyet University | Turkey

Prof. Fuat Aras is a distinguished civil engineer whose academic and research trajectory demonstrates substantial contributions to structural dynamics, earthquake engineering, and the protection of historical and modern infrastructures. With extensive experience as Professor in the Civil Engineering Department at Istanbul Medeniyet University, he has built a strong research portfolio grounded in experimental and numerical analyses of reinforced concrete and masonry structures, dynamic characterization, structural health monitoring, and seismic retrofitting. His scholarly accomplishments include numerous SCI/SCIE-indexed journal publications, books, and international conference papers, reflecting a consistent commitment to advancing global knowledge in earthquake-resistant design and the preservation of cultural heritage structures. Prof. Aras has coordinated several national research projects funded by TUBITAK, focusing on innovative technologies for improving building performance, dynamic behavior evaluation, and damage assessment, while also contributing to major European Union–supported initiatives on seismic protection. He has supervised multiple graduate theses on structural monitoring, retrofitting strategies, and seismic performance, indicating strong mentorship and academic leadership. His long-standing collaborations with national and international institutions, including partnerships with researchers in Türkiye, Europe, and the United States, highlight his interdisciplinary and global impact. In addition to his research excellence, he has held key administrative roles such as department chair and vice dean, strengthening institutional development and academic governance. His body of work has supported safer community infrastructures by providing evidence-based insights into building behavior, seismic vulnerabilities, and preservation strategies, thereby contributing significantly to societal resilience. With extensive teaching experience in core structural engineering courses and expertise in advanced analytical tools, Prof. Aras continues to shape the next generation of engineers while expanding research frontiers in structural dynamics and earthquake engineering, positioning him as a highly influential figure with strong future potential for further impact in his field.

Profile: Google Scholar | ORCID
Publications

Aras, F., Krstevska, L., Altay, G., & Tashkov, L. (2011). Experimental and numerical modal analyses of a historical masonry palace. Construction and Building Materials, 25(1), 81–91.

Namli, M., & Aras, F. (2020). Investigation of effects of dynamic loads in metro tunnels during construction and operation on existing buildings. Arabian Journal of Geosciences, 13(11), 424.

Aras, F., & Altay, G. (2015). Investigation of mechanical properties of masonry in historic buildings. Građevinar, 67(5),

Aras, F., & Altay, G. (2015). Seismic evaluation and structural control of the historical Beylerbeyi Palace. Structural Control and Health Monitoring, 22(2), 347–364.

Aras, F., & Düzci, E. (2018). Seismic performance of traditional stone masonry dwellings under Çanakkale seismic sequences. Journal of Performance of Constructed Facilities, 32(4), 04018029.

Meiqian Wang | Geotechnical Engineering | Best Innovation Award

Prof. Meiqian Wang | Geotechnical Engineering | Best Innovation Award

Professor | Kunming University of Science and Technology | Best Innovation Award

Prof. Meiqian Wang is a researcher and faculty member at Kunming University of Science and Technology, specializing in geotechnical mechanics, geological engineering, and engineering project management. His work focuses on the mechanical behavior, sandification mechanisms, and disaster-control technologies of sandy dolomite, contributing to major infrastructure projects in Southwest China. He has led two research projects and participated in several significant initiatives, including a major science and technology project of the Yunnan Provincial Science and Technology Department, multiple National Natural Science Foundation projects, open fund studies, and enterprise-oriented engineering investigations. During his doctoral period, he achieved notable academic productivity, publishing seven first-author papers, including five SCI-indexed articles—with one in a top-tier journal—and one core Chinese publication. His work has also extended to engineering geology, machine-learning-based rock property evaluation, and structural stability analyses in complex geological conditions. In addition to scholarly publications, he has contributed substantially to scientific and technological innovation, holding one invention patent, five utility model patents, and four computer software copyrights related to rock mechanics testing, data acquisition, and analysis systems. He has collaborated extensively with interdisciplinary teams on tunnel engineering, rock mass behavior, and large water-diversion project studies, further enhancing the scientific understanding of rock sandification processes. His professional contributions include serving as a journal editorial board member and reviewer for several SCI journals in civil engineering and geosciences, reflecting his growing international academic presence. His research has delivered tangible societal benefits by supporting safer, more efficient design and construction practices in high-risk geological environments, thereby advancing regional infrastructure resilience and sustainability.

Profiles: ORCID
Publication:

Wang, M., Xu, W., Mu, H., Mi, J., Wu, Y., & Wang, Y. (2022). Study on construction and reinforcement technology of dolomite sanding tunnel. Sustainability, 14(15)

Yang Yunpeng | Geotechnical Engineering | Research Excellence Award

Assoc. Prof. Dr. Yang Yunpeng | Geotechnical Engineering | Research Excellence Award

Yangtze University | China

Assoc. Prof. Dr. Yang Yunpeng is a dedicated early-career scholar and Specially Appointed Associate Professor at the College of Geosciences, Yangtze University, recognized for his emerging contributions to the field of geological hazards and mountain disaster dynamics. His research primarily focuses on the mechanisms, evolution, and monitoring of landslides, debris flows, rock avalanches, and snow avalanches, with an emphasis on disaster-chain processes in seismically active regions. He has developed expertise in seismic-signal-based monitoring and early warning frameworks, experimental flume testing, debris-flow dynamics, and disaster-risk mitigation technologies. Dr. Yang has published over ten research articles, including nine SCI-indexed papers, with four as first or corresponding author in reputable international journals such as Engineering Geology, JGR: Earth Surface, and Landslides. His work has clarified the chain-inducing mechanisms of seismic landslide–debris-flow sequences, advanced the understanding of debris-flow impact dynamics, and contributed novel insights into sediment transport transitions under seismic forcing. In addition to publications, he has participated in the development of multiple national invention patents related to disaster simulation, debris-flow hazard mitigation, and engineering modeling technologies, demonstrating both scientific innovation and practical applicability. Dr. Yang collaborates actively with interdisciplinary teams involving experts in seismology, geomorphology, engineering geology, and geotechnical engineering, enabling integrative approaches to mountain-hazard research. His contributions support national needs in major engineering construction and disaster-risk reduction, with societal impacts spanning improved hazard early-warning capabilities, enhanced understanding of disaster chains, and the development of protective strategies for vulnerable mountainous regions. Through rigorous research, international engagement, and commitment to scientific advancement, Yang Yunpeng continues to establish himself as a promising researcher contributing valuable knowledge to global geohazard prevention and sustainable development.

Profile: Scopus
Publication

Physical model experiment of rainfall-induced instability of a two-layer slope: Implications for early warning. Landslides. (2024)

Caoyuan Niu | Geotechnical Engineering | Best Researcher Award

Dr. Caoyuan Niu | Geotechnical Engineering | Best Researcher Award

Senior Engineer‌ | China Railway No.4 Engineering Group Co., Ltd | China

Dr. Caoyuan Niu is a dynamic researcher specializing in bridge and tunnel engineering, with a strong focus on the mechanical behavior and fracture characteristics of rock and composite materials under complex environmental and loading conditions. Currently serving as a postdoctoral fellow jointly supervised by China Railway No.4 Engineering Group Co., Ltd. and Hefei University of Technology, he obtained his Ph.D. in Civil Engineering from Sichuan University in 2021. His scholarly output demonstrates a robust contribution to the field, with six SCI-indexed publications as the first author in high-impact international journals such as Rock Mechanics and Rock Engineering, International Journal of Rock Mechanics and Mining Sciences, and Cold Regions Science and Technology. In addition to his academic publications, Dr. Niu holds ten authorized invention patents, reflecting a strong orientation toward practical innovation and technology transfer. His research on the bearing capacity of rock-anchored anchorage systems and the deterioration of rock materials under freeze-thaw and hydrochemical effects has advanced the understanding of infrastructure resilience and safety in extreme conditions. Through interdisciplinary collaboration with experts in material mechanics, structural engineering, and geotechnics, he has contributed to developing safer, more sustainable design principles for large-scale bridge and tunnel projects. Dr. Niu’s scientific endeavors not only enhance theoretical insights into rock fracture mechanics but also provide applied engineering solutions that support national infrastructure development and global knowledge exchange in civil and geotechnical engineering.

Profile: Scopus
Publications:

Influence of the interlaced holes on crack propagation behavior under impact loads. International Journal of Impact Engineering. 
(Cited by: 17)

Deterioration of dynamic fracture properties of granite under the coupled effects of hydrochemical solutions and freeze–thaw cycles. International Journal of Rock Mechanics and Mining Sciences. 
(Cited by: 8)

Ahmad Nassef | Structural Engineering | Best Researcher Award

Assoc. Prof. Dr. Ahmad Nassef | Structural Engineering | Best Researcher Award

Associate professor | University of Buraimi | Oman

Assoc. Prof. Dr. Ahmad Salah Edeen Nassef is an accomplished Associate Professor of Structural Engineering at Helwan University, Egypt, and the University of Buraimi, Oman, where he also served as Acting Dean and Assistant Dean of the College of Engineering. With over two decades of academic and professional experience, his expertise spans structural analysis, reinforced concrete and steel design, nonlinear structural behavior, and sustainability in construction materials. He earned his Ph.D. and M.Sc. in Structural Engineering from Cairo University and a B.Sc. in Civil Engineering from Helwan University. Dr. Nassef has authored numerous publications in international journals and conferences, covering topics such as buckling of columns, nonlinear damage mechanics, composite structures, and eco-friendly concrete using palm tree and medical waste materials. His research contributions, reflected in a growing citation record, demonstrate his global engagement and innovation in sustainable structural systems. He has led and mentored multiple funded research projects supported by institutions such as the Ministry of Higher Education, Research, and Innovation (MOHERI) of Oman and Najran University, addressing practical engineering challenges and advancing materials recycling and durability enhancement. Beyond research, Dr. Nassef has been deeply involved in academic leadership, serving as Chair of Research and Ethics Committees, ABET and OAAA accreditation coordinator, and quality assurance leader for civil engineering programs. His scholarly excellence has been recognized with multiple awards, including the University of Buraimi’s Scholarship and Teaching Excellence Awards (2022, 2023) and Best Student Research Paper Awards at national symposiums. His extensive collaborations and mentorship have significantly contributed to capacity building and research culture in the Middle East. Through his sustained efforts in integrating innovation, sustainability, and quality education, Dr. Nassef continues to make a notable global impact in civil and structural engineering research and higher education.

Publications:

Nassef, A. S. E. (2015). Fibonacci sequence and golden ratio in new formula of predicting cracks propagation in reinforced concrete tie. International Journal of Damage Mechanics, 24(8), 1214–1226. 
(Cited by: 5)

Nassef, A. S. E., & Dahim, M. A. (2016). New bi-modular material approach to buckling problem of reinforced concrete columns. [Journal name unavailable]. (Cited by: 6)

Nassef, A. S. E., Nassar, M. M., & El-Refaee, M. M. (2019). Dynamic response of Timoshenko beam resting on nonlinear Pasternak foundation carrying sprung masses. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 
(Cited by: 9)

Nassef, A. S. E., Al-Maqbali, K. H., & Al Naqabi, S. M. (2021). Effects of replacing cement by date palm trees wastes on concrete performance. Proceedings of the International Structural Engineering and Construction, 8(1). 
(Cited by: 5)

Nassef, A. (2022). Non-prismatic model for laterally loaded pile in granular soil resisted by ultimate lateral reaction. International Journal of Geotechnical Engineering, 16(4), 400–407. 
(Cited by: 4)

Changbai Wang | Structural Engineering | Best Researcher Award

Dr. Changbai Wang | Structural Engineering | Best Researcher Award

Vice-Dean | Anhui University of Science and Technology | China

Dr. Changbai Wang, affiliated with Anhui University of Science and Technology, Huainan, China, is a distinguished researcher recognized for his significant contributions to the field of construction materials and sustainable concrete technologies. With a robust publication record of 20 scholarly documents, his research has achieved over 343 citations across 326 documents, reflecting a notable h-index of 10, underscoring the consistent quality and influence of his academic work. Dr. Wang’s research primarily focuses on high-performance concrete (HPC), internal curing mechanisms, and the innovative utilization of industrial by-products, particularly coal gangue aggregates, to enhance the sustainability and performance of civil engineering materials. His recent works, such as studies on pore-regulated coal aggregates and self-compacting tunnel concrete, demonstrate his commitment to advancing environmentally responsible construction practices. Collaborating with over 40 co-authors, he has fostered interdisciplinary partnerships that bridge material science, civil engineering, and environmental sustainability. Through his extensive research collaborations, Dr. Wang contributes to the global discourse on low-carbon construction, emphasizing circular economy principles and resource optimization in infrastructure development. His scholarly influence extends beyond academia, as his findings have practical implications for industries aiming to reduce ecological footprints while maintaining material performance. The societal impact of his work lies in promoting sustainable material innovation aligned with modern infrastructure needs. With ongoing projects and emerging studies in high-performance concrete applications, Dr. Wang demonstrates strong potential for further breakthroughs in green construction materials and structural durability research. His academic trajectory and commitment to addressing global environmental challenges position him as a key contributor to the future of sustainable construction and materials engineering.

Profile: Scopus | ORCID
Featured Publications:
  • Updated internal curing for HPC using pore-regulated coal aggregates. Case Studies in Construction Materials.

  • Internal curing for tunnel self-compacting concrete using pre-soaked coal gangue: A promising way for spot utilization of coal gangue. Iranian Journal of Science and Technology Transactions of Civil Engineering.

Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Dr. Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Associate Professor | OP Jindal University | India

Dr. Mahasakti Mahamaya is a distinguished researcher whose academic contributions span across engineering and interdisciplinary sciences, with a focus on innovative methodologies, sustainable development, and applied technologies. Her research portfolio demonstrates significant depth, addressing complex real-world challenges through analytical precision and forward-looking inquiry. Dr. Mahamaya has authored a substantial number of peer-reviewed papers in reputed international journals and conferences, contributing extensively to the advancement of knowledge in her field. Her work has attracted a remarkable level of global attention, reflected through 483 total citations and 445 citations since 2020, underscoring the continuing influence of her research. With an h-index of 10 and an i10-index of 10, Dr. Mahamaya has consistently maintained scholarly excellence and research impact across multiple domains. She has actively collaborated with experts and institutions worldwide, strengthening multidisciplinary networks and fostering the integration of academic research with industry and policy frameworks. Her studies have advanced understanding in areas such as material behavior, computational modeling, and sustainable engineering practices, while also highlighting the societal and environmental implications of technological innovation. Through mentorship, publication, and collaborative initiatives, Dr. Mahamaya has contributed to nurturing a new generation of researchers and to shaping future-oriented strategies in engineering and applied science. Her sustained academic engagement and global recognition underscore a career dedicated to impactful, ethically grounded, and socially relevant scientific inquiry, positioning her as a leading figure in her research domain.

Featured Publications:

Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 1–11.

Mahamaya, M., Das, S. K., Reddy, K. R., & Jain, S. (2021). Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. Journal of Cleaner Production, 127778.

Parhi, P. S., Garanayak, L., Mahamaya, M., & Das, S. K. (2017). Stabilization of an expansive soil using alkali activated fly ash based geopolymer. International Congress and Exhibition "Sustainable Civil Infrastructures".

Mahamaya, M., & Das, S. K. (2017). Characterization of mine overburden and fly ash as a stabilized pavement material. Particulate Science and Technology, 35(6), 660–666.

Das, S. K., Mahamaya, M., & Reddy, K. R. (2020). Coal mine overburden soft shale as a controlled low strength material. International Journal of Mining, Reclamation and Environment, 34(10), 725–747.

Azunna Sunday | Structural Engineering | Best Researcher Award

Mr. Azunna Sunday | Structural Engineering | Best Researcher Award

Doctoral Researcher | Housing research centre | Malaysia

Mr. Azunna Sunday Ugochukwu has established a strong professional and research background in civil and structural engineering, with notable expertise in sustainable construction materials, structural analysis, and project management. His career includes extensive work in both academic and industrial settings, where he contributed to the design and execution of major infrastructure projects such as residential complexes, university facilities, religious centers, and extensive road networks across Nigeria. At Universiti Putra Malaysia, his research has focused on innovative materials for civil engineering applications, including coconut shell, palm kernel shell, recycled bricks, granite powder, and rubberized geopolymer concrete, leading to multiple publications in reputable international journals. His scholarly contributions span experimental and review studies, addressing compressive strength, stress-strain behavior, and dynamic response of advanced concrete materials, demonstrating his capacity to integrate environmental sustainability with engineering performance. Beyond research, Azunna has engaged in professional workshops on structural modeling, design, and detailing, sharing expertise with institutions such as Federal Polytechnic Bauchi and Abubakar Tafawa Balewa University. His memberships with COREN, the Nigerian Institution of Civil Engineers, and the Nigerian Society of Engineers affirm his commitment to professional standards and development within the engineering community. With experience as an assistant structural engineer, assistant project manager, and doctoral researcher, he has consistently demonstrated versatility in applying theoretical knowledge to practical engineering challenges. His skill set includes advanced structural design software, AutoCAD, drone operation, and engineering instrumentation, underscoring his technological adaptability. The scope of his executed projects—from institutional buildings to healthcare facilities and leisure parks—highlights his versatility and capacity to manage diverse engineering assignments effectively. His growing academic output, combined with practical project delivery, positions him as a significant contributor to advancing civil engineering knowledge and practice. Engr. Azunna Sunday Ugochukwu has achieved 120 Citations, 8 Documents, and 5 h-index.

Featured Publications:

Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 342.

Azunna, S. U., Aziz, F. N. A. A., Rashid, R. S. M., & Bakar, N. B. A. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237.

Azunna, S. U., Aziz, F. N. A. A., Cun, P. M., & Elhibir, M. M. O. (2019). Characterization of lightweight cement concrete with partial replacement of coconut shell fine aggregate. SN Applied Sciences, 1(6), 649.

Azunna, S. U., Aziz, F. N. A. A., Bakar, N. A., & Nasir, N. A. M. (2018). Mechanical properties of concrete with coconut shell as partial replacement of aggregates. IOP Conference Series: Materials Science and Engineering, 431(3), 032001.

Azunna, S. U., Aziz, F. N. A. B. A., Al-Ghazali, N. A., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225.