Abdullahi Maikanti Baru | Materials Science and Engineering | Research Excellence Award

Mr. Abdullahi Maikanti Baru | Materials Science and Engineering | Research Excellence Award

Texas Tech University | United States

Mr. Abdullahi Maikanti Baru is an emerging researcher whose work spans petroleum engineering, civil engineering, and energy systems, with a strong emphasis on sustainable and data-driven infrastructure solutions. His expertise includes multiphase flow in subsurface systems, gas injection processes, hydrogen storage in deep saline aquifers, and structural behavior of engineering materials, complemented by advanced skills in experimental data acquisition and analysis using LiDAR, numerical simulators, and programming tools. He has contributed to peer-reviewed international journal publications and conference proceedings addressing hydrogen energy storage feasibility and structural buckling phenomena, demonstrating interdisciplinary depth and methodological rigor. His research experience involves collaborative projects with faculty and multidisciplinary teams, integrating field measurements, computational modeling, and engineering judgment to address safety, efficiency, and resilience challenges. Through active engagement in professional societies and research leadership roles, his work supports energy transition, infrastructure safety, and informed decision-making, reflecting a growing scholarly profile with meaningful societal and industrial relevance.

Citation Metrics (Cited by)

12

8

4

0

 

Citations
10

h-index
1

i10-index
0

View Google Scholar Profile

Top Publications


An Investigation of Buckling Phenomenon in Steel Elements

– Heriot-Watt University, 2017 · Cited by 9

An Investigation of Buckling Phenomenon in Steel Elements

– 2nd International Earth Science & Global Geology Conference, 2018 · Cited by 1

Prabhat K. Agnihotri | Materials Science and Engineering | Excellence in Research Award

Prof. Prabhat K. Agnihotri | Materials Science and Engineering | Excellence in Research Award

Professor | Indian Institute of Technology Ropar | India

Prabhat K. Agnihotri is an accomplished researcher in the field of advanced materials and solid mechanics, with core expertise spanning multifunctional composites, bio-inspired material design, experimental and fracture mechanics, and interface/interphase engineering. His research integrates experimental investigations with multiscale modeling to understand and enhance the mechanical, thermal, electrical, and functional performance of multiphase and hierarchical materials. A significant emphasis of his work lies in carbon nanotube–based composites, thermal interface materials, electromagnetic shielding, energy harvesting structures, and structural health monitoring systems. He has contributed extensively to high-impact journals and holds multiple patents translating fundamental research into industrially relevant technologies. His research portfolio includes leadership and collaboration in several nationally and internationally funded projects, addressing challenges in aerospace, defense, electronics, and energy applications. Through sustained contributions to composite materials science and mechanics, his work advances both theoretical understanding and practical deployment of next-generation engineered materials.

Citation Metrics (Scopus)

300

200

100

0

Citations
242

Documents
6

h-index
5


View Scopus Profile
View Google Scholar Profile

Top 5 Featured Publications

Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. Seval Kinden | Materials Science and Engineering | Research Excellence Award

Assist. Prof. Dr. | Eskisehir Technical University | Turkey

Assist. Prof. Dr. Seval Kinden is an Assistant Professor of Electrical and Electronics Engineering with recognized expertise in flexible electronics, nanomaterials, wearable sensors, and energy-harvesting systems. She has authored 20+ peer-reviewed journal articles and conference papers, accumulating hundreds of citations, with publications in leading outlets such as IEEE Sensors Journal, Advanced Materials Technologies, and ACS Applied Materials & Interfaces. Her research portfolio includes international and national projects funded by NSF, TÜBİTAK, and industry, alongside a granted patent in graphene-based wearable sensors. Through strong global collaborations and interdisciplinary innovation, her work delivers impactful solutions for healthcare monitoring, smart infrastructure, and sustainable energy technologies, contributing meaningfully to societal and technological advancement.

 

Citation Metrics (Google Scholar)

700

500

300

100

0

Citations 684

h-index 11

i10-index 11


View Google Scholar Profile

Top 5 Featured Publications


Fully conformal square-patch frequency-selective surface toward wearable electromagnetic shielding

– IEEE Antennas and Wireless Propagation Letters, 2017 (72 citations)

Fuat Aras | Structural Engineering | Research Excellence in Civil and Environmental Engineering Award

Prof. Fuat Aras | Structural Engineering | Research Excellence in Civil and Environmental Engineering Award

Istanbul Medeniyet University | Turkey

Prof. Fuat Aras is a distinguished civil engineer whose academic and research trajectory demonstrates substantial contributions to structural dynamics, earthquake engineering, and the protection of historical and modern infrastructures. With extensive experience as Professor in the Civil Engineering Department at Istanbul Medeniyet University, he has built a strong research portfolio grounded in experimental and numerical analyses of reinforced concrete and masonry structures, dynamic characterization, structural health monitoring, and seismic retrofitting. His scholarly accomplishments include numerous SCI/SCIE-indexed journal publications, books, and international conference papers, reflecting a consistent commitment to advancing global knowledge in earthquake-resistant design and the preservation of cultural heritage structures. Prof. Aras has coordinated several national research projects funded by TUBITAK, focusing on innovative technologies for improving building performance, dynamic behavior evaluation, and damage assessment, while also contributing to major European Union–supported initiatives on seismic protection. He has supervised multiple graduate theses on structural monitoring, retrofitting strategies, and seismic performance, indicating strong mentorship and academic leadership. His long-standing collaborations with national and international institutions, including partnerships with researchers in Türkiye, Europe, and the United States, highlight his interdisciplinary and global impact. In addition to his research excellence, he has held key administrative roles such as department chair and vice dean, strengthening institutional development and academic governance. His body of work has supported safer community infrastructures by providing evidence-based insights into building behavior, seismic vulnerabilities, and preservation strategies, thereby contributing significantly to societal resilience. With extensive teaching experience in core structural engineering courses and expertise in advanced analytical tools, Prof. Aras continues to shape the next generation of engineers while expanding research frontiers in structural dynamics and earthquake engineering, positioning him as a highly influential figure with strong future potential for further impact in his field.

Profile: Google Scholar | ORCID
Publications

Aras, F., Krstevska, L., Altay, G., & Tashkov, L. (2011). Experimental and numerical modal analyses of a historical masonry palace. Construction and Building Materials, 25(1), 81–91.

Namli, M., & Aras, F. (2020). Investigation of effects of dynamic loads in metro tunnels during construction and operation on existing buildings. Arabian Journal of Geosciences, 13(11), 424.

Aras, F., & Altay, G. (2015). Investigation of mechanical properties of masonry in historic buildings. Građevinar, 67(5),

Aras, F., & Altay, G. (2015). Seismic evaluation and structural control of the historical Beylerbeyi Palace. Structural Control and Health Monitoring, 22(2), 347–364.

Aras, F., & Düzci, E. (2018). Seismic performance of traditional stone masonry dwellings under Çanakkale seismic sequences. Journal of Performance of Constructed Facilities, 32(4), 04018029.

Ahmad Nassef | Structural Engineering | Best Researcher Award

Assoc. Prof. Dr. Ahmad Nassef | Structural Engineering | Best Researcher Award

Associate professor | University of Buraimi | Oman

Assoc. Prof. Dr. Ahmad Salah Edeen Nassef is an accomplished Associate Professor of Structural Engineering at Helwan University, Egypt, and the University of Buraimi, Oman, where he also served as Acting Dean and Assistant Dean of the College of Engineering. With over two decades of academic and professional experience, his expertise spans structural analysis, reinforced concrete and steel design, nonlinear structural behavior, and sustainability in construction materials. He earned his Ph.D. and M.Sc. in Structural Engineering from Cairo University and a B.Sc. in Civil Engineering from Helwan University. Dr. Nassef has authored numerous publications in international journals and conferences, covering topics such as buckling of columns, nonlinear damage mechanics, composite structures, and eco-friendly concrete using palm tree and medical waste materials. His research contributions, reflected in a growing citation record, demonstrate his global engagement and innovation in sustainable structural systems. He has led and mentored multiple funded research projects supported by institutions such as the Ministry of Higher Education, Research, and Innovation (MOHERI) of Oman and Najran University, addressing practical engineering challenges and advancing materials recycling and durability enhancement. Beyond research, Dr. Nassef has been deeply involved in academic leadership, serving as Chair of Research and Ethics Committees, ABET and OAAA accreditation coordinator, and quality assurance leader for civil engineering programs. His scholarly excellence has been recognized with multiple awards, including the University of Buraimi’s Scholarship and Teaching Excellence Awards (2022, 2023) and Best Student Research Paper Awards at national symposiums. His extensive collaborations and mentorship have significantly contributed to capacity building and research culture in the Middle East. Through his sustained efforts in integrating innovation, sustainability, and quality education, Dr. Nassef continues to make a notable global impact in civil and structural engineering research and higher education.

Publications:

Nassef, A. S. E. (2015). Fibonacci sequence and golden ratio in new formula of predicting cracks propagation in reinforced concrete tie. International Journal of Damage Mechanics, 24(8), 1214–1226. 
(Cited by: 5)

Nassef, A. S. E., & Dahim, M. A. (2016). New bi-modular material approach to buckling problem of reinforced concrete columns. [Journal name unavailable]. (Cited by: 6)

Nassef, A. S. E., Nassar, M. M., & El-Refaee, M. M. (2019). Dynamic response of Timoshenko beam resting on nonlinear Pasternak foundation carrying sprung masses. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 
(Cited by: 9)

Nassef, A. S. E., Al-Maqbali, K. H., & Al Naqabi, S. M. (2021). Effects of replacing cement by date palm trees wastes on concrete performance. Proceedings of the International Structural Engineering and Construction, 8(1). 
(Cited by: 5)

Nassef, A. (2022). Non-prismatic model for laterally loaded pile in granular soil resisted by ultimate lateral reaction. International Journal of Geotechnical Engineering, 16(4), 400–407. 
(Cited by: 4)

Poloju Kiran Kumar | Structural Engineering | Best Academic Researcher Award

Dr. Poloju Kiran Kumar | Structural Engineering | Best Academic Researcher Award

Senior Lecturer | Middle East College | Oman

Dr. Poloju Kiran Kumar is a distinguished researcher and academician in civil and environmental engineering, presently serving as Senior Lecturer at Middle East College, Muscat, Oman, and Committee Member of the Institution of Civil Engineers (ICE), Oman region. With over thirteen years of academic and research experience, his expertise encompasses structural engineering, sustainable construction materials, and advanced geopolymer concrete technology. Dr. Kiran has authored more than 80 research papers in Web of Science and Scopus-indexed journals and contributed eight book chapters published by Springer, Taylor & Francis, and Nova Publishers. His research achievements include five patents in India and Oman focusing on innovative sustainable concrete materials and artificial intelligence applications in structural performance analysis. He has successfully completed four externally funded research projects worth 16,000 OMR from The Research Council of Oman and leads collaborative projects with Prince Sattam bin Abdulaziz University, Saudi Arabia. His scholarly influence is reflected through over 250 Google Scholar citations with an h-index of 12. Dr. Kiran’s academic leadership is evident in his role in program accreditation, quality assurance, and development of modern teaching pedagogies integrating digital tools. His commitment to sustainable construction and community engagement has earned multiple accolades, including four Best Academic Staff Awards, the INSO Young Scientist Award (2022), and recognition as ICE Oman’s Committee Member (2025). A Chartered Engineer and Fellow of the Higher Education Academy (UK), Dr. Kiran has delivered numerous keynote lectures and workshops across Oman, India, and beyond on geopolymer concrete, sustainable infrastructure, and pedagogical innovation. His research contributes significantly to the advancement of low-carbon construction technologies, enhancing environmental resilience and promoting sustainable development in alignment with global engineering goals.

Profile: Scopus | Google Scholar
Publications:

Poloju, R. K. M. K., & Anil, V. (2017). Properties of concrete as influenced by shape and texture of fine aggregate. American Journal of Applied Scientific Research, 3(3), 28–36.
(Cited by: 22)

Poloju, K. K., & Srinivasu, K. (2021). Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Materials Today: Proceedings, 42, 962–968. 
(Cited by: 60)

Rollakanti, C. R., Prasad, C. V. S. R., Poloju, K. K., Al Muharbi, N. M. J., & Arun, Y. V. (2021). An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder. Materials Today: Proceedings, 43, 1325–1330. 
(Cited by: 56)

Poloju, V. R. K. K., & Naidu, [First initial unavailable]. (2022). New method of data collection using the Kobo Toolbox. Journal of Positive School Psychology, 1527–1535.
(Cited by: 39)

Al Abri, S. A. S., Rollakanti, C. R., Poloju, K. K., & Joe, A. (2022). Experimental study on mechanical properties of concrete by partial replacement of cement with eggshell powder for sustainable construction. Materials Today: Proceedings, 65, 1660–1665. 
(Cited by: 25)

Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Dr. Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Postdoctoral Fellow | University of KwaZulu-Natal | South Africa

Dr. Oluwatoyin Joseph Gbadeyan’s research field is anchored in the development of sustainable materials, advanced composites, and innovative manufacturing techniques with applications in mechanical engineering, renewable energy, and the circular economy. His extensive project portfolio includes the design and optimization of bio-composites, bioplastics, and nanomaterials for environmental sustainability and industrial applications. Through his work at leading institutions such as the University of KwaZulu-Natal and Durban University of Technology, he has led groundbreaking projects on hybrid nano-shell plant fiber bio-composites and tribological materials for brake pad applications. His research extends to the valorization of waste materials into high-performance composites, the development of snail shell–derived nanoparticles, and the improvement of additive manufacturing processes to enhance mechanical strength and process efficiency. As a principal investigator and collaborator, he has developed proposals in bioeconomy-focused projects including biofuel, biobricks, and bioplastics, contributing to the advancement of waste-to-energy systems and sustainable product design. His extensive publication record of over thirty peer-reviewed articles, two books, and seventeen book chapters reflects his expertise in nanotechnology, material characterization, and polymer science. Dr. Gbadeyan’s experience spans across academic research, industrial innovation, and technical leadership, where he has successfully guided students and research teams in laboratory experimentation, data analysis, and project execution. His research interests focus on green composite materials, sustainable energy systems, waste valorization, and tribological performance optimization of engineering materials. By integrating materials science with sustainable development principles, he continues to explore innovative approaches that promote eco-friendly manufacturing and circular economy models. His professional activities, including his roles as journal reviewer and committee member for national research funding evaluations, underscore his leadership in advancing the frontiers of sustainable materials research and his dedication to fostering innovation within global engineering communities.

Publications:

Baloyi, R. B., Gbadeyan, O. J., Sithole, B., & Chunilall, V. (2024). Recent advances in recycling technologies for waste textile fabrics: A review. Textile Research Journal, 94(3–4), 508–529.

Khoaele, K. K., Gbadeyan, O. J., Chunilall, V., & Sithole, B. (2023). The devastation of waste plastic on the environment and remediation processes: A critical review. Sustainability, 15(6), 5233.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Awogbemi, O. (2020). Studies on the mechanical and absorption properties of Achatina fulica snail and eggshells reinforced composite materials. Composite Structures, 239, 112043.

Gbadeyan, O. J., Muthivhi, J., Linganiso, L. Z., & Deenadayalu, N. (2024). Decoupling economic growth from carbon emissions: A transition toward low-carbon energy systems—A critical review. Clean Technologies, 6(3), 1076–1113.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Onwubu, S. (2020). Optimization of milling procedures for synthesizing nano‐CaCO₃ from Achatina fulica shell through mechanochemical techniques. Journal of Nanomaterials, 2020(1), 4370172.

Andrij Milenin | Materials for fpv drones | Best Researcher Award

Professor Andrij Milenin | Materials for fpv drones | Best Researcher Award

Professor | AGH University in Krakow | Poland

Professor Andrij Milenin, Dr. Habil. Eng., is a distinguished researcher and educator in the field of computational mechanics and materials engineering, currently serving as Professor and Leader of the Laboratory of Computational Mechanics at the AGH University of Krakow, Poland. With a robust academic foundation in Metallurgical Engineering from the National Metallurgical Academy of Ukraine, where he earned his Doctor of Engineering in 1991 and Dr. Habil. Eng. in 2001, Professor Milenin has built a career spanning over three decades across Ukraine, Poland, and international collaborations. His expertise encompasses finite element modeling, metal forming processes, and the development of biodegradable metallic biomaterials, with a particular focus on Zn- and Mg-based surgical wires and implant materials that contribute to advancements in biomedical engineering. He has authored numerous high-impact publications in leading journals such as Metallurgical and Materials Transactions A, Materials (Basel), and Archives of Civil and Mechanical Engineering, reflecting his commitment to applied research and innovation. His works address both theoretical and practical challenges, bridging computational modeling with industrial and medical applications. As a dedicated mentor, he has supervised ten PhD theses and numerous master’s and bachelor’s projects, fostering the next generation of researchers in materials science and computational mechanics. His role as reviewer for premier journals and the National Science Centre of Poland further highlights his scientific credibility and leadership. Professor Milenin’s ongoing projects explore sustainable manufacturing methods, advanced heat transfer modeling, and nanocoating technologies for medical implants, underscoring his contribution to the global pursuit of eco-efficient and health-focused engineering solutions. His extensive citation record and sustained scholarly activity mark him as a thought leader whose research not only strengthens academic knowledge but also drives tangible societal and technological progress.

Profile: Scopus | ORCID
Publications:

Investigating the anticancer potential of zinc and magnesium alloys: From base materials to nanocoated titanium implants. Materials, 17(Issue unavailable). 
(Cited by: 2)

In vitro and in vivo degradation of the new dissolvable surgical wire, produced from Zn-based low alloy by hot and cold drawing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 
(Cited by: 1)

Optimizing heat transfer models for efficient coil cooling in warehouse management systems. Archives of Civil and Mechanical Engineering.

Effects of FPV drone frame materials on thermal conditions of motors under extreme payloads: Experimental and numerical analysis. Processes.

New technique for sharpening ultra-thin wires for the drawing process: Incremental furnace stretching. Bulletin of the Polish Academy of Sciences: Technical Sciences.

S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Dr. S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Professor | SRM Institute of Science and Technology | India

Dr. S. Ilangovan is a distinguished academic and researcher at the SRM Institute of Science and Technology, Ramapuram Campus, Chennai, India, recognized for his significant contributions to engineering and applied sciences. He has authored eight peer-reviewed publications that have collectively garnered 128 citations from 114 documents, reflecting the growing global relevance and academic impact of his work. His research achievements are further evidenced by an h-index of 5, which highlights his consistent scholarly productivity and influence across multiple interdisciplinary domains. Dr. Ilangovan’s research primarily spans the areas of civil and structural engineering, materials science, and sustainable technologies, emphasizing innovative design solutions and environmental resilience. Through collaborations with over 18 co-authors, he has contributed to advancing applied research that bridges theoretical understanding with practical implementation, fostering technological development and knowledge exchange within the academic and industrial sectors. His scholarly endeavors have influenced emerging fields and inspired further studies in engineering design and materials optimization. Beyond publications, Dr. Ilangovan’s work demonstrates a strong societal orientation, focusing on sustainable infrastructure and problem-solving approaches that align with contemporary global development goals. His research contributions, marked by methodological rigor and interdisciplinary perspective, exemplify his commitment to academic excellence, collaborative learning, and the translation of research outcomes into tangible benefits for society. With a steadily growing citation record and recognized expertise, Dr. Ilangovan continues to contribute meaningfully to the scientific community through impactful research, mentorship, and engagement in innovative technological solutions aimed at creating a more sustainable and resilient built environment.

Profile: Scopus | ORCID | Google Scholar
Featured Publications:

Ilangovan, S., Kumaran, S. S., Vasudevan, A., & Naresh, K. (2019). Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Materials Research Express, 6(8), 0850e2. 
(Cited by: 35)

Ilangovan, S., Kumaran, S. S., & Naresh, K. (2020). Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: Experimental, analytical and numerical investigation. Materials Research Express, 7(2), 025007. 
(Cited by: 33)

Keerthi Gowda, B. S., Naresh, K., Ilangovan, S., Sanjay, M. R., & Siengchin, S. (2022). Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites. Journal of Natural Fibers, 19(13), 6074–6088. 
(Cited by: 30)

Ilangovan, S., Kumaran, S. S., Naresh, K., Shankar, K., & Velmurugan, R. (2023). Studies on glass/epoxy and basalt/epoxy thin-walled pressure vessels subjected to internal pressure using ultrasonic ‘C’ scan technique. Thin-Walled Structures, 182, 110160. 
(Cited by: 28)

Subramanian, J., Selvaraj, V. K., Singh, R., Kakur, N., & Whenish, R. (2024). Acoustical properties of a 3D printed honeycomb structure filled with nanofillers: Experimental analysis and optimization for emerging applications. Defence Technology, 35, 248–258.
(Cited by: 14)

Ahmed A. Kader | Materials Science and Engineering | Excellence in Research Award

Assoc. Prof. Dr. Ahmed A. Kader | Materials Science and Engineering | Excellence in Research Award

Associate Prof | Giza Engineering Institute | Egypt

Assoc. Prof. Dr. Ahmed A. Kader’s research field encompasses a wide spectrum of structural and civil engineering applications, with an emphasis on sustainable materials, structural performance, and innovative construction technologies. His extensive project experience includes consulting and managing large-scale civil infrastructure projects, serving as a Construction Manager and Head of Structural Design Offices for various consultancy firms in Egypt and Saudi Arabia. His expertise lies in the design and analysis of reinforced concrete, foundation engineering, fluid mechanics, and hydrology, coupled with advanced computational tools such as SAP2000, ETABS, SAFE, and BIM modeling systems. His research interests center around the development and optimization of eco-friendly and high-performance materials, particularly geopolymer concrete incorporating industrial by-products like red-mud and zeolite, and the use of alkali-activated binders to enhance mechanical and durability properties. Dr. Kader’s published works reflect his dedication to addressing global environmental challenges through green engineering approaches, including the utilization of recycled aggregates, volcanic tuff, and banana fiber in concrete composites. His projects explore the structural performance of modern construction systems such as precast insulated panels and fiber-reinforced concrete, aiming to improve energy efficiency, load resistance, and long-term durability. Through experimental studies, numerical modeling, and field applications, he contributes to advancements in sustainable infrastructure, construction waste recycling, and smart material integration. His research and consulting collaborations with engineering institutions and industry partners continue to bridge the gap between academic innovation and practical implementation, underscoring his commitment to advancing the civil engineering field through scientific inquiry, sustainable design, and technical excellence.

Profile: Google Scholar | ORCID
Featured Publications:

Attia, M. M., Al Sayed, A., Tayeh, B. A., & Shawky, S. M. M. (2022). Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study. Advances in Concrete Construction, 14, 355–368.

Edris, W. F., Abdelkader, S., Salama, A. H. E., & Al Sayed, A. (2021). Concrete behaviour with volcanic tuff inclusion. Civil Engineering and Architecture, 9, 1434–1441.

Shaaban, M., Edris, W. F., Odah, E., Ezz, M. S., & Al-Sayed, A. (2023). A green way of producing high strength concrete utilizing recycled concrete. Civil Engineering Journal, 9(10), 2467–2485.

Edris, W. F., Elbialy, S., El-Zohairy, A., Soliman, A. M., Shawky, S. M. M., Selouma, T. I., ... (2024). Examining mechanical property differences in concrete with natural and synthetic fiber additives. Journal of Composites Science, 8(5), 167.

Al Sayed, A. A. K. A., Al-Waked, Q. F., Shawky, S. M. M., Al-jabali, H. M., & Edris, W. F. (2023). Effect of alkali activated limestone-silica fume blended precursor on performance enhancement of recycled aggregate concrete. Case Studies in Construction Materials, 19, e02661.